P. Boulais and P. Frenette, Making sense of hematopoietic stem cell niches, Blood, vol.125, issue.17, pp.2621-2629, 2015.
DOI : 10.1182/blood-2014-09-570192

B. Psaila and D. Lyden, The metastatic niche: adapting the foreign soil, Nature Reviews Cancer, vol.3, issue.4, pp.285-293, 2009.
DOI : 10.4161/cc.5.11.2775

M. Meads, L. Hazlehurst, and W. Dalton, The Bone Marrow Microenvironment as a Tumor Sanctuary and Contributor to Drug Resistance, Clinical Cancer Research, vol.14, issue.9, pp.2519-2526, 2008.
DOI : 10.1158/1078-0432.CCR-07-2223

H. Lam, R. Vessella, and C. Morrissey, The role of the microenvironment-dormant prostate disseminated tumor cells in the bone marrow, Drug Discovery Today: Technologies, vol.11, pp.41-47, 2014.
DOI : 10.1016/j.ddtec.2014.02.002

M. Sosa, P. Bragado, and J. Aguirre-ghiso, Mechanisms of disseminated cancer cell dormancy: an awakening field, Nature Reviews Cancer, vol.12, issue.9, pp.611-622, 2014.
DOI : 10.1091/mbc.12.4.863

D. Phinney and D. Prockop, Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair-Current Views, Stem Cells, vol.103, issue.11, pp.2896-2902, 2007.
DOI : 10.1007/s002580050268

S. Bergfeld and Y. Declerck, Bone marrow-derived mesenchymal stem cells and the tumor microenvironment, Cancer and Metastasis Reviews, vol.15, issue.289???98, pp.249-261, 2010.
DOI : 10.3109/10428199809059251

P. Barcellos-de-souza, V. Gori, and F. Bambi, Tumor microenvironment: Bone marrow-mesenchymal stem cells as key players, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1836, issue.2, pp.321-335, 2013.
DOI : 10.1016/j.bbcan.2013.10.004

A. Karnoub, A. Dash, and A. Vo, Mesenchymal stem cells within tumour stroma promote breast cancer metastasis, Nature, vol.9, issue.7162, pp.557-563, 2007.
DOI : 10.3233/BD-2007-26107

S. Bergfeld, L. Blavier, and Y. Declerck, Bone Marrow-Derived Mesenchymal Stromal Cells Promote Survival and Drug Resistance in Tumor Cells, Molecular Cancer Therapeutics, vol.13, issue.4, pp.962-975, 2014.
DOI : 10.1158/1535-7163.MCT-13-0400

M. Bernardo and W. Fibbe, Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation, Cell Stem Cell, vol.13, issue.4, pp.392-402, 2013.
DOI : 10.1016/j.stem.2013.09.006

M. Krampera, Mesenchymal stromal cell ???licensing???: a multistep process, Leukemia, vol.65, issue.9, pp.1408-1414, 2011.
DOI : 10.1158/0008-5472.CAN-08-4698

E. Van-der-pol, A. Boing, and P. Harrison, Classification, Functions, and Clinical Relevance of Extracellular Vesicles, Pharmacological Reviews, vol.64, issue.3, pp.676-705, 2012.
DOI : 10.1124/pr.112.005983

M. Yanez-mo, P. Siljander, and Z. Andreu, Biological properties of extracellular vesicles and their physiological functions, Journal of Extracellular Vesicles, vol.40, issue.1, p.27066, 2015.
DOI : 10.1093/nar/gks658

C. Harding, J. Heuser, and P. Stahl, Exosomes: Looking back three decades and into the future, The Journal of Cell Biology, vol.60, issue.4, pp.367-371, 2013.
DOI : 10.1038/nm0598-594

M. Colombo, G. Raposo, and C. Thery, Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles, Annual Review of Cell and Developmental Biology, vol.30, issue.1, pp.255-289, 2014.
DOI : 10.1146/annurev-cellbio-101512-122326

P. Vader, X. Breakefield, and M. Wood, Extracellular vesicles: emerging targets for cancer therapy, Trends in Molecular Medicine, vol.20, issue.7, pp.385-393, 2014.
DOI : 10.1016/j.molmed.2014.03.002

M. Tkach and C. Thery, Communication by Extracellular Vesicles: Where We Are and Where We Need to Go, Cell, vol.164, issue.6, pp.1226-1232, 2016.
DOI : 10.1016/j.cell.2016.01.043

T. Whiteside, Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes), Biochemical Society Transactions, vol.173, issue.1, pp.245-251, 2013.
DOI : 10.1111/j.0105-2896.2004.00199.x

A. Bobrie and C. Thery, Exosomes and communication between tumours and the immune system: are all exosomes equal?, Biochemical Society Transactions, vol.115, issue.1, pp.263-267, 2013.
DOI : 10.1038/mt.2008.1

C. Grange, M. Tapparo, and F. Collino, Microvesicles Released from Human Renal Cancer Stem Cells Stimulate Angiogenesis and Formation of Lung Premetastatic Niche, Cancer Research, vol.71, issue.15, pp.5346-5356, 2011.
DOI : 10.1158/0008-5472.CAN-11-0241

J. Hood, R. San, and S. Wickline, Exosomes Released by Melanoma Cells Prepare Sentinel Lymph Nodes for Tumor Metastasis, Cancer Research, vol.71, issue.11, pp.3792-3801, 2011.
DOI : 10.1158/0008-5472.CAN-10-4455

H. Peinado, M. Aleckovic, and S. Lavotshkin, Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET, Nature Medicine, vol.26, issue.6, pp.883-891, 2012.
DOI : 10.1093/jnci/djq153

URL : http://europepmc.org/articles/pmc3645291?pdf=render

S. Dubois, Y. Kalika, and J. Lukens, Metastatic Sites in Stage IV and IVS Neuroblastoma Correlate With Age, Tumor Biology, and Survival, Journal of Pediatric Hematology/Oncology, vol.21, issue.3, pp.181-189, 1999.
DOI : 10.1097/00043426-199905000-00005

J. Maris, Recent Advances in Neuroblastoma, New England Journal of Medicine, vol.362, issue.23, pp.2202-2211, 2010.
DOI : 10.1056/NEJMra0804577

Y. Sohara, H. Shimada, and C. Minkin, Bone Marrow Mesenchymal Stem Cells Provide an Alternate Pathway of Osteoclast Activation and Bone Destruction by Cancer Cells, Cancer Research, vol.65, issue.4, pp.1129-1135, 2005.
DOI : 10.1158/0008-5472.CAN-04-2853

E. Horwitz, L. Blanc, K. Dominici, and M. , Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement, Cytotherapy, vol.7, issue.5, pp.393-395, 2005.
DOI : 10.1080/14653240500319234

M. Krampera, J. Galipeau, and Y. Shi, Immunological characterization of multipotent mesenchymal stromal cells???The International Society for Cellular Therapy (ISCT) working proposal, Cytotherapy, vol.15, issue.9, pp.1054-1061, 2013.
DOI : 10.1016/j.jcyt.2013.02.010

URL : https://hal.archives-ouvertes.fr/hal-00866729

R. Kashyap, B. Roucourt, and F. Lembo, Syntenin controls migration, growth, proliferation, and cell cycle progression in cancer cells, Frontiers in Pharmacology, vol.9, issue.R50, p.241, 2015.
DOI : 10.1016/j.devcel.2005.07.011

J. Li, Y. Lee, and H. Johansson, Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles, Journal of Extracellular Vesicles, vol.101, issue.1, p.26883, 2015.
DOI : 10.1016/j.nano.2015.01.003

A. Boing, E. Van-der-pol, and A. Grootemaat, Single-step isolation of extracellular vesicles by size-exclusion chromatography, Journal of Extracellular Vesicles, vol.743, issue.1, p.23430, 2014.
DOI : 10.1016/0021-9673(96)00130-6

J. Kowal, G. Arras, and M. Colombo, Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes, Proceedings of the National Academy of Sciences, vol.22, issue.4, pp.968-77, 2016.
DOI : 10.1083/jcb.147.3.599

R. Ghossoub, F. Lembo, and A. Rubio, Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2, Nature Communications, vol.108, p.3477, 2014.
DOI : 10.1371/journal.pone.0054581

URL : http://www.nature.com/articles/ncomms4477.pdf

J. Lotvall, A. Hill, and F. Hochberg, Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles, Journal of Extracellular Vesicles, vol.3, issue.1, p.26913, 2014.
DOI : 10.3402/jev.v3.26913

S. Mathivanan and R. Simpson, ExoCarta: A compendium of exosomal proteins and RNA, PROTEOMICS, vol.36, issue.21, pp.4997-5000, 2009.
DOI : 10.1002/pmic.200900351

D. Kim, B. Kang, and O. Kim, EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles, Journal of Extracellular Vesicles, vol.22, issue.1, p.20384, 2013.
DOI : 10.1038/nbt1031

M. Pathan, S. Keerthikumar, and C. Ang, FunRich: An open access standalone functional enrichment and interaction network analysis tool, PROTEOMICS, vol.35, issue.10 Suppl, pp.2597-2601, 2015.
DOI : 10.1093/nar/gkm327

T. Ara, L. Song, and H. Shimada, Interleukin-6 in the Bone Marrow Microenvironment Promotes the Growth and Survival of Neuroblastoma Cells, Cancer Research, vol.69, issue.1, pp.329-337, 2009.
DOI : 10.1158/0008-5472.CAN-08-0613

R. Weiler, G. Meyerson, and R. Fischer-colbrie, Divergent changes of chromogranin A/secretogranin II levels in differentiating human neuroblastoma cells, FEBS Letters, vol.52, issue.1-2, pp.27-29, 1990.
DOI : 10.1007/BF00492518

H. Harris, U. Andersson, and D. Pisetsky, HMGB1: A multifunctional alarmin driving autoimmune and inflammatory disease, Nature Reviews Rheumatology, vol.101, issue.4, pp.195-202, 2012.
DOI : 10.1073/pnas.2434651100

J. Van-deun, P. Mestdagh, and R. Sormunen, The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling, Journal of Extracellular Vesicles, vol.1, issue.5, p.34858, 2014.
DOI : 10.7717/peerj.201

A. Silverman, R. Nakata, and H. Shimada, A Galectin-3-Dependent Pathway Upregulates Interleukin-6 in the Microenvironment of Human Neuroblastoma, Cancer Research, vol.72, issue.9, pp.2228-2238, 2012.
DOI : 10.1158/0008-5472.CAN-11-2165

F. Chalmin, S. Ladoire, and G. Mignot, Membraneassociated hsp72 from tumor-derived exosomes mediates stat3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells, J Clin Invest, vol.120, issue.2, pp.457-471, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00451697

M. Fabbri, A. Paone, and F. Calore, MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response, Proceedings of the National Academy of Sciences, vol.101, issue.15, pp.2110-2116, 2012.
DOI : 10.1073/pnas.0400937101

URL : http://www.pnas.org/content/109/31/E2110.full.pdf

S. Liu, J. Sun, and Q. Lan, Glioblastoma microvesicles promote endothelial cell proliferation through akt/beta-catenin pathway, Int J Clin Exp Pathol, vol.7, issue.8, pp.4857-4866, 2014.

K. Svensson, H. Christianson, and A. Wittrup, Exosome Uptake Depends on ERK1/2-Heat Shock Protein 27 Signaling and Lipid Raft-mediated Endocytosis Negatively Regulated by Caveolin-1, Journal of Biological Chemistry, vol.1773, issue.24, pp.17713-17724, 2013.
DOI : 10.1016/j.addr.2012.07.006

L. Munn, Cancer and inflammation, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.6, issue.1, 2016.
DOI : 10.1136/gutjnl-2016-312078

URL : http://europepmc.org/articles/pmc5561333?pdf=render

J. Rossi, Z. Lu, and M. Jourdan, Interleukin-6 as a Therapeutic Target, Clinical Cancer Research, vol.21, issue.6, pp.1248-1257, 2015.
DOI : 10.1158/1078-0432.CCR-14-2291

T. Ara, R. Nakata, and M. Sheard, Critical Role of STAT3 in IL-6???Mediated Drug Resistance in Human Neuroblastoma, Cancer Research, vol.73, issue.13, pp.3852-3864, 2013.
DOI : 10.1158/0008-5472.CAN-12-2353

N. Ferrara, Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications, SeminOncol, vol.29, issue.6, pp.10-14, 2002.

J. Haduong, L. Blavier, and S. Baniwal, Interaction between bone marrow stromal cells and neuroblastoma cells leads to a VEGFA-mediated osteoblastogenesis, International Journal of Cancer, vol.91, issue.3 Suppl, pp.797-809, 2015.
DOI : 10.1007/s00109-012-0936-6

E. Sierra-filardi, C. Nieto, and A. Dominguez-soto, CCL2 Shapes Macrophage Polarization by GM-CSF and M-CSF: Identification of CCL2/CCR2-Dependent Gene Expression Profile, The Journal of Immunology, vol.192, issue.8, pp.3858-3867, 2014.
DOI : 10.4049/jimmunol.1302821

J. Wang, R. Loberg, and R. Taichman, The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis, Cancer and Metastasis Reviews, vol.66, issue.11, pp.573-587, 2006.
DOI : 10.1007/978-1-4419-9129-4_12

E. Vacchelli, A. Eggermont, and W. Fridman, Trial Watch, OncoImmunology, vol.18, issue.7, p.24850, 2013.
DOI : 10.4161/onci.19369

J. Paggetti, F. Haderk, and M. Seiffert, Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts, Blood, vol.126, issue.9, pp.1106-1117, 2015.
DOI : 10.1182/blood-2014-12-618025

X. Li, S. Wang, and R. Zhu, Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NF??B-TLR signaling pathway, Journal of Hematology & Oncology, vol.332, issue.2, p.42, 2016.
DOI : 10.1016/j.bbrc.2005.04.135

D. Vrij, J. Maas, S. Kwappenberg, and K. , Glioblastoma-derived extracellular vesicles modify the phenotype of monocytic cells, International Journal of Cancer, vol.19, issue.7, pp.1630-1642, 2015.
DOI : 10.1038/nm.3337

K. Al-nedawi, B. Meehan, and R. Kerbel, Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR, Proceedings of the National Academy of Sciences, vol.18, issue.10, pp.3794-3799, 2009.
DOI : 10.1038/modpathol.3800427

P. Kucharzewska, H. Christianson, and J. Welch, Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development, Proceedings of the National Academy of Sciences, vol.12, issue.1, pp.7312-7317, 2013.
DOI : 10.1038/ncb2000

S. Melo, H. Sugimoto, O. Connell, and J. , Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis, Cancer Cell, vol.26, issue.5, pp.707-721, 2014.
DOI : 10.1016/j.ccell.2014.09.005

URL : https://doi.org/10.1016/j.ccell.2014.09.005

K. Challagundla, P. Wise, and P. Neviani, Exosomemediated transfer of micrornas within the tumor microenvironment and neuroblastoma resistance to chemotherapy, J Natl Cancer Inst, vol.107, p.7, 2015.

J. Skog, T. Wurdinger, and S. Van-rijn, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nature Cell Biology, vol.94, issue.12, pp.1470-1476, 2008.
DOI : 10.1371/journal.pone.0000571

URL : http://europepmc.org/articles/pmc3423894?pdf=render

A. Hoshino, B. Costa-silva, and T. Shen, Tumour exosome integrins determine organotropic metastasis, Nature, vol.13, issue.7578, pp.329-335, 2015.
DOI : 10.1074/mcp.M113.031591

URL : http://europepmc.org/articles/pmc4788391?pdf=render

Y. Fukaya, H. Shimada, and L. Wang, Identification of Galectin-3-binding Protein as a Factor Secreted by Tumor Cells That Stimulates Interleukin-6 Expression in the Bone Marrow Stroma, Journal of Biological Chemistry, vol.19, issue.27, pp.18573-18581, 2008.
DOI : 10.1074/jbc.274.10.6783

D. Taylor and S. Shah, Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes, Methods, vol.87, pp.3-10, 2015.
DOI : 10.1016/j.ymeth.2015.02.019

L. Carlsson, O. Nilsson, and A. Larsson, Characteristics of human prostasomes isolated from three different sources, The Prostate, vol.65, issue.4, pp.322-330, 2003.
DOI : 10.1007/BF00266412

C. Escrevente, N. Grammel, and S. Kandzia, Sialoglycoproteins and N-Glycans from Secreted Exosomes of Ovarian Carcinoma Cells, PLoS ONE, vol.5, issue.10, p.78631, 2013.
DOI : 10.1371/journal.pone.0078631.s005

A. Block, S. Saraswati, and C. Lichti, Co-purification of Mac-2 binding protein with galectin-3 and association with prostasomes in human semen, The Prostate, vol.115, issue.7, pp.711-721, 2011.
DOI : 10.1046/j.1365-2249.1999.00782.x

S. Hurwitz, M. Rider, and J. Bundy, Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers, Oncotarget, vol.7, issue.52, pp.86999-87015, 2016.
DOI : 10.18632/oncotarget.13569