S. Bollini, Re-Activated Adult Epicardial Progenitor Cells Are a Heterogeneous Population Molecularly Distinct from Their Embryonic Counterparts, Stem Cells and Development, vol.23, issue.15, pp.1719-1730, 2014.
DOI : 10.1089/scd.2014.0019

J. Van-tuyn, Epicardial Cells of Human Adults Can Undergo an Epithelial-to-Mesenchymal Transition and Obtain Characteristics of Smooth Muscle Cells In Vitro, Stem Cells, vol.71, issue.2, pp.271-278, 2007.
DOI : 10.1161/01.RES.71.1.40

Y. Yamaguchi, Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by mesenchymal transformation and PPAR?? activation, Proceedings of the National Academy of Sciences, vol.73, issue.7, pp.2070-2075, 2015.
DOI : 10.1073/pnas.181329398

Q. Liu, Epicardium-to-fat transition in injured heart, Cell Research, vol.pii, issue.11, pp.1367-1369, 2014.
DOI : 10.1016/j.stem.2013.02.008

L. Zangi, An IGF1R-dependent pathway drives epicardial adipose tissue formation after myocardial injury. Circulation CIRCULATIONAHA, 2016.
DOI : 10.1161/circulationaha.116.022064

URL : http://europepmc.org/articles/pmc5195872?pdf=render

Y. Sun, Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells, Developmental Biology, vol.304, issue.1, pp.286-296, 2007.
DOI : 10.1016/j.ydbio.2006.12.048

B. Zhou, Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart, Nature, vol.208, issue.7200, pp.109-113, 2008.
DOI : 10.1161/01.RES.82.10.1043

M. Singh and J. Epstein, Epicardium-Derived Cardiac Mesenchymal Stem Cells: Expanding the Outer Limit of Heart Repair, Circulation Research, vol.110, issue.7, pp.904-906, 2012.
DOI : 10.1161/RES.0b013e31825332a3

Y. Lee, Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor ??, Cellular and Molecular Life Sciences, vol.29, issue.20, pp.3959-3971, 2013.
DOI : 10.1128/MCB.01300-08

M. Pittenger, Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, vol.284, issue.5411, pp.143-147, 1999.
DOI : 10.1126/science.284.5411.143

C. Jiang, HIF-1A and C/EBPs transcriptionally regulate adipogenic differentiation of bone marrow-derived MSCs in hypoxia, Stem Cell Research & Therapy, vol.14, issue.1, p.21, 2015.
DOI : 10.1038/ni.2566

Q. Tang, Sequential phosphorylation of CCAAT enhancer-binding protein ?? by MAPK and glycogen synthase kinase 3?? is required for adipogenesis, Proceedings of the National Academy of Sciences, vol.14, issue.13, pp.9766-9771, 2005.
DOI : 10.1073/pnas.0137044100

N. Asli, M. Xaymardan, and R. Harvey, Epicardial Origin of Resident Mesenchymal Stem Cells in the Adult Mammalian Heart, Journal of Developmental Biology, vol.14, issue.2, pp.117-137, 2014.
DOI : 10.1161/CIRCRESAHA.110.233262

R. Chilukoti, Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositas-related gene expression in the atria, International Journal of Cardiology, vol.187, pp.604-613, 2015.
DOI : 10.1016/j.ijcard.2015.03.072

F. Bost, M. Aouadi, L. Caron, and B. Binétruy, The role of MAPKs in adipocyte differentiation and obesity, Biochimie, vol.87, issue.1, pp.51-56, 2005.
DOI : 10.1016/j.biochi.2004.10.018

URL : https://hal.archives-ouvertes.fr/inserm-00000011

D. Prusty, B. Park, K. Davis, and S. Farmer, Activation of MEK/ERK Signaling Promotes Adipogenesis by Enhancing Peroxisome Proliferator-activated Receptor ?? (PPAR??) and C/EBP?? Gene Expression during the Differentiation of 3T3-L1 Preadipocytes, Journal of Biological Chemistry, vol.278, issue.48, pp.46226-46232, 2002.
DOI : 10.1074/jbc.M204527200

T. Zhang, H. Guan, and K. Yang, Keratinocyte growth factor promotes preadipocyte proliferation via an autocrine mechanism, Journal of Cellular Biochemistry, vol.101, issue.Pt 12, pp.737-746, 2010.
DOI : 10.1164/ajrccm.158.2.9711111

O. Tsukamoto, Natriuretic Peptides Enhance the Production of Adiponectin in Human Adipocytes and in Patients With Chronic Heart Failure, Journal of the American College of Cardiology, vol.53, issue.22, pp.2070-2077, 2009.
DOI : 10.1016/j.jacc.2009.02.038

S. Souza, Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK, Biochemical and Biophysical Research Communications, vol.410, issue.3, pp.398-403, 2011.
DOI : 10.1016/j.bbrc.2011.05.143

D. Pisani, Visfatin expression analysis in association with recruitment and activation of human and rodent brown and brite adipocytes, Adipocyte, vol.2, issue.2, pp.186-195, 2015.
DOI : 10.1016/j.molmet.2014.09.003

S. Liangpunsakul, Increasing serum pre-adipocyte factor-1 (Pref-1) correlates with decreased body fat, increased free fatty acids, and level of recent alcohol consumption in excessive alcohol drinkers, Alcohol, vol.48, issue.8, pp.795-800, 2014.
DOI : 10.1016/j.alcohol.2014.07.013

X. Zhang, Sildenafil promotes adipogenesis through a PKG pathway, Biochemical and Biophysical Research Communications, vol.396, issue.4, pp.1054-1059, 2010.
DOI : 10.1016/j.bbrc.2010.05.064

C. Moro, E. Klimcakova, M. Lafontan, M. Berlan, and J. Galitzky, Phosphodiesterase-5A and neutral endopeptidase activities in human adipocytes do not control atrial natriuretic peptide-mediated lipolysis, British Journal of Pharmacology, vol.255, issue.7, pp.1102-1110, 2007.
DOI : 10.1152/ajpregu.00453.2001

URL : https://hal.archives-ouvertes.fr/inserm-00409690

K. Ikoma-seki, Role of LRP1 and ERK and cAMP Signaling Pathways in Lactoferrin-Induced Lipolysis in Mature Rat Adipocytes, PLOS ONE, vol.17, issue.2, p.141378, 2015.
DOI : 10.1371/journal.pone.0141378.s001

K. Hemmrich, Nitric oxide and downstream second messenger cGMP and cAMP enhance adipogenesis in primary human preadipocytes, Cytotherapy, vol.12, issue.4, pp.547-553, 2010.
DOI : 10.3109/14653241003695042

K. Pandey, Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca(2+) release, and activation of protein kinase C, Front Mol Neurosci, vol.7, p.75, 2014.

C. Moro, Functional and Pharmacological Characterization of the Natriuretic Peptide-Dependent Lipolytic Pathway in Human Fat Cells, Journal of Pharmacology and Experimental Therapeutics, vol.308, issue.3, pp.984-992, 2004.
DOI : 10.1124/jpet.103.060913

F. Houshmand, M. Faghihi, and S. Zahediasl, Role of Atrial Natriuretic Peptide in Oxytocin Induced Cardioprotection, Heart, Lung and Circulation, vol.24, issue.1, pp.86-93, 2015.
DOI : 10.1016/j.hlc.2014.05.023

S. Ross, Inhibition of Adipogenesis by Wnt Signaling, Science, vol.289, issue.5481, pp.950-953, 2000.
DOI : 10.1126/science.289.5481.950

J. Dietz, Mechanisms of atrial natriuretic peptide secretion from the atrium, Cardiovascular Research, vol.68, issue.1, pp.8-17, 2005.
DOI : 10.1016/j.cardiores.2005.06.008

A. De-bold and M. De-bold, Determinants of Natriuretic Peptide Production by the Heart, Journal of Investigative Medicine, vol.117, issue.7, pp.371-377, 2005.
DOI : 10.1016/0006-291X(83)91675-3

B. Zhou, Adult mouse epicardium modulates myocardial injury by secreting paracrine factors, Journal of Clinical Investigation, vol.121, issue.5, pp.1894-1904, 2011.
DOI : 10.1172/JCI45529DS1

URL : http://www.jci.org/articles/view/45529/files/pdf

Y. Chau, Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source, Nature Cell Biology, vol.366, issue.4, pp.367-375, 2014.
DOI : 10.1016/j.ydbio.2012.04.020

URL : https://hal.archives-ouvertes.fr/hal-00968725

H. Zhang, Endocardium Contributes to Cardiac FatNovelty and Significance, Circulation Research, vol.118, issue.2, pp.254-265, 2016.
DOI : 10.1161/CIRCRESAHA.115.307202

URL : http://circres.ahajournals.org/content/circresaha/118/2/254.full.pdf

A. Ruiz-villalba, A. Ziogas, M. Ehrbar, and J. Pérez-pomares, Characterization of Epicardial-Derived Cardiac Interstitial Cells: Differentiation and Mobilization of Heart Fibroblast Progenitors, PLoS ONE, vol.121, issue.1, p.53694, 2013.
DOI : 10.1371/journal.pone.0053694.s005

S. Hatem and P. Sanders, Epicardial adipose tissue and atrial fibrillation, Cardiovascular Research, vol.7, issue.2, pp.205-213, 2014.
DOI : 10.1089/107632701300062859

URL : https://academic.oup.com/cardiovascres/article-pdf/102/2/205/9635435/cvu045.pdf

A. Armani, V. Marzolla, G. Rosano, A. Fabbri, and M. Caprio, Phosphodiesterase type 5 (PDE5) in the adipocyte: a novel player in fat metabolism?, Trends in Endocrinology & Metabolism, vol.22, issue.10, pp.404-411, 2011.
DOI : 10.1016/j.tem.2011.05.004

T. Katafuchi, D. Garbers, and J. Albanesi, CNP/GC-B system: A new regulator of adipogenesis, Peptides, vol.31, issue.10, pp.1906-1911, 2010.
DOI : 10.1016/j.peptides.2010.06.025

M. Mitschke, Increased cGMP promotes healthy expansion and browning of white adipose tissue, The FASEB Journal, vol.34, issue.4, pp.1621-1630, 2013.
DOI : 10.1152/ajpendo.00008.2010

A. Hotchkiss, Atrial natriuretic peptide inhibits cell cycle activity of embryonic cardiac progenitor cells via its NPRA receptor signaling axis, American Journal of Physiology-Cell Physiology, vol.46, issue.7, pp.557-569, 2015.
DOI : 10.1111/j.1582-4934.2007.00044.x

G. Thibault, F. Amiri, and R. Garcia, REGULATION OF NATRIURETIC PEPTIDE SECRETION BY THE HEART, Annual Review of Physiology, vol.61, issue.1, pp.193-217, 1999.
DOI : 10.1146/annurev.physiol.61.1.193

T. Ogawa, M. Vatta, B. Bruneau, and A. De-bold, Characterization of natriuretic peptide production by adult heart atria, American Journal of Physiology-Heart and Circulatory Physiology, vol.253, issue.22, pp.1977-1986, 1999.
DOI : 10.1016/0895-7061(94)00210-3

H. Ruskoaho, O. Vakkuri, O. Arjamaa, O. Vuolteenaho, and J. Leppäluoto, Pressor hormones regulate atrial-stretch-induced release of atrial natriuretic peptide in the pithed rat, Circulation Research, vol.64, issue.3, pp.482-492, 1989.
DOI : 10.1161/01.RES.64.3.482

D. Roy, Atrial natriuretic factor during atrial fibrillation and supraventricular tachycardia, Journal of the American College of Cardiology, vol.9, issue.3, pp.509-514, 1987.
DOI : 10.1016/S0735-1097(87)80042-6

URL : https://doi.org/10.1016/s0735-1097(87)80042-6

T. Nishikimi, Stimulatory and Inhibitory regulation of lipolysis by the NPR-A/cGMP/PKG and NPR-C/Gi pathways in rat cultured adipocytes, Regulatory Peptides, vol.153, issue.1-3, pp.1-3, 2009.
DOI : 10.1016/j.regpep.2008.10.010

M. Lafontan, Control of lipolysis by natriuretic peptides and cyclic GMP, Trends in Endocrinology & Metabolism, vol.19, issue.4, pp.130-137, 2008.
DOI : 10.1016/j.tem.2007.11.006

URL : https://hal.archives-ouvertes.fr/inserm-00409147

C. Sengenès, M. Berlan, D. Glisezinski, I. Lafontan, M. Galitzky et al., Natriuretic peptides: a new lipolytic pathway in human adipocytes, The FASEB Journal, vol.14, issue.10, pp.1345-1351, 2000.
DOI : 10.1097/00005344-198611000-00005

M. Bordicchia, Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes, Journal of Clinical Investigation, vol.122, issue.3, pp.1022-1036, 2012.
DOI : 10.1172/JCI59701DS1

URL : https://hal.archives-ouvertes.fr/hal-00758279

A. Antonopoulos, Mutual Regulation of Epicardial Adipose Tissue and Myocardial Redox State by PPAR-??/Adiponectin SignallingNovelty and Significance, Circulation Research, vol.118, issue.5, pp.842-855, 2016.
DOI : 10.1161/CIRCRESAHA.115.307856

R. Mahajan, Electrophysiological, Electroanatomical, and Structural Remodeling of the Atria as Consequences of Sustained Obesity, Journal of the American College of Cardiology, vol.66, issue.1, pp.1-11, 2015.
DOI : 10.1016/j.jacc.2015.04.058

T. Moore-morris, Resident fibroblast lineages mediate pressure overload???induced cardiac fibrosis, Journal of Clinical Investigation, vol.124, issue.7, pp.2921-2934, 2014.
DOI : 10.1172/JCI74783DS1

URL : http://www.jci.org/articles/view/74783/files/pdf

C. Rücker-martin, F. Pecker, D. Godreau, and S. Hatem, Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro, Cardiovascular Research, vol.55, issue.1, pp.38-52, 2002.
DOI : 10.1016/S0008-6363(02)00338-3

M. Elsen, BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells, American Journal of Physiology-Cell Physiology, vol.2, issue.5, pp.431-440, 2014.
DOI : 10.1096/fj.09-133546