T. Schatton, G. Murphy, N. Frank, K. Yamaura, A. Waaga-gasser et al., Identification of cells initiating human melanomas, Nature, vol.317, issue.7176, pp.345-349, 2008.
DOI : 10.1016/S0002-9440(10)64943-7

B. Wilson, K. Saab, J. Ma, T. Schatton, P. Putz et al., ABCB5 Maintains Melanoma-Initiating Cells through a Proinflammatory Cytokine Signaling Circuit, Cancer Research, vol.74, issue.15, pp.4196-4207, 2014.
DOI : 10.1158/0008-5472.CAN-14-0582

URL : http://cancerres.aacrjournals.org/content/canres/74/15/4196.full.pdf

T. Borovski, D. Sousa, E. Vermeulen, L. Medema, and J. , Cancer Stem Cell Niche: The Place to Be, Cancer Research, vol.71, issue.3, pp.634-639, 2011.
DOI : 10.1158/0008-5472.CAN-10-3220

G. Semenza, P. Roth, H. Fang, and G. Wang, Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1, J Biol Chem, vol.269, pp.23757-23763, 1994.

K. Glunde, T. Shah, P. Winnard, . Jr, V. Raman et al., Hypoxia Regulates Choline Kinase Expression through Hypoxia-Inducible Factor-1?? Signaling in a Human Prostate Cancer Model, Cancer Research, vol.68, issue.1, pp.172-180, 2008.
DOI : 10.1158/0008-5472.CAN-07-2678

L. Milane, S. Ganesh, S. Shah, Z. Duan, and M. Amiji, Multi-modal strategies for overcoming tumor drug resistance: Hypoxia, the Warburg effect, stem cells, and multifunctional nanotechnology, Journal of Controlled Release, vol.155, issue.2, pp.237-247, 2011.
DOI : 10.1016/j.jconrel.2011.03.032

P. Liu, J. Liao, Z. Tang, W. Wu, Y. J. Zeng et al., Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway, Cell Death & Differentiation, vol.183, issue.1, pp.124-135, 2014.
DOI : 10.1084/jem.183.4.1797

S. Yuan, F. Wang, G. Chen, H. Zhang, L. Feng et al., Effective Elimination of Cancer Stem Cells By a Novel Drug Combination Strategy, STEM CELLS, vol.2, issue.1, pp.23-34, 2013.
DOI : 10.1016/j.molonc.2008.01.003

D. Ciavardelli, C. Rossi, D. Barcaroli, S. Volpe, A. Consalvo et al., Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment, Cell Death & Disease, vol.69, issue.7, p.25032859, 2014.
DOI : 10.1016/S0076-6879(80)69045-4

URL : http://www.nature.com/cddis/journal/v5/n7/pdf/cddis2014285a.pdf

V. Zangiacomi, K. Urakami, K. Maruyama, K. Yamaguchi, and M. Kusuhara, CD133-positive cancer stem cells from colo205 human colon adenocarcinoma cell line show resitance to chemitherapy and display a specific metabolomic prifile, Genes Cancer, vol.5, pp.250-260, 2014.

H. Xie, J. Hanai, J. Ren, L. Kats, K. Burgess et al., Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis and Tumor Progression in Mouse Models of Lung Cancer and Impacts Tumor-Initiating Cells, Cell Metabolism, vol.19, issue.5, pp.795-809, 2014.
DOI : 10.1016/j.cmet.2014.03.003

A. Kathagen, A. Schulte, G. Balcke, H. Phillips, T. Martens et al., Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells, Acta Neuropathologica, vol.208, issue.2, pp.763-780, 2013.
DOI : 10.1084/jem.20101470

E. Vlashi, C. Lagadec, L. Vergnes, T. Matsutani, K. Masui et al., Metabolic state of glioma stem cells and nontumorigenic cells, Proceedings of the National Academy of Sciences, vol.69, issue.17, pp.16062-16067, 2011.
DOI : 10.1158/0008-5472.CAN-09-0347

N. Lutz, S. Franks, M. Frank, S. Pomer, and W. Hull, Investigation of multidrug resistance in cultured human renal cell carcinoma cells by 31P-NMR spectroscopy and treatment survival assays, Magnetic Resonance Materials in Physics, Biology and Medicine, vol.50, issue.3, pp.144-161, 2005.
DOI : 10.7326/0003-4819-96-5-549

O. Kaplan, J. Jaroszewski, R. Clarke, C. Fairchild, P. Schoenlein et al., The multidrug resistance phenotype: 31P nuclear magnetic resonance characterization and 2-deoxyglucose toxicity, Cancer Res, vol.51, pp.1638-1644, 1991.

P. Venkatesan, K. Saravanan, and B. Nagarajan, Characterization of multidrug resistance and monitoring of tumor response by combined 31P and 1H nuclear magnetic resonance spectroscopic analysis, Anti-Cancer Drugs, vol.9, issue.5, pp.449-456, 1998.
DOI : 10.1097/00001813-199806000-00012

J. Cohen, R. Lyon, C. Chen, P. Faustino, G. Batist et al., Differences in phosphate metabolite levels in drug-sensitive and -resistant human breast cancer cell lines determined by 31P magnetic resonance spectroscopy, Cancer Res, vol.46, pp.4087-4090, 1986.

N. Lutz, E. Béraud, and P. Cozzone, Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts, Journal of Visualized Experiments, vol.91, issue.91, p.51829, 2014.
DOI : 10.3791/51829

N. Lutz and P. Cozzone, P NMR Spectroscopic Analysis of Phospholipids in Crude Tissue Extracts. 2. Line Width and Spectral Resolution, Analytical Chemistry, vol.82, issue.13, pp.5441-5446, 2010.
DOI : 10.1021/ac100515y

URL : https://hal.archives-ouvertes.fr/hal-00617783

N. Lutz and P. Cozzone, P NMR Spectroscopic Analysis of Phospholipids in Crude Tissue Extracts. 1. Chemical Shift and Signal Separation, Analytical Chemistry, vol.82, issue.13, pp.5433-5440, 2010.
DOI : 10.1021/ac100514n

URL : https://hal.archives-ouvertes.fr/hal-00617783

A. Viola, V. Saywell, L. Villard, P. Cozzone, and N. Lutz, Metabolic Fingerprints of Altered Brain Growth, Osmoregulation and Neurotransmission in a Rett Syndrome Model, PLoS ONE, vol.330, issue.1, pp.157-17237885, 2007.
DOI : 10.1371/journal.pone.0000157.s001

URL : https://hal.archives-ouvertes.fr/hal-00169296

H. Lilliefors, On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown, Journal of the American Statistical Association, vol.35, issue.318, pp.399-402, 1967.
DOI : 10.1214/aoms/1177728726

M. Vander-heiden, L. Cantley, and C. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation, Science, vol.26, issue.1, 2009.
DOI : 10.1038/nrc2536

J. Haddad, Recombinant human interleukin (IL)-1 beta-mediated regulation of hypoxia-inducible fac- tor-1 alpha (HIF-1 alpha) stabilization, nuclear translocation and activation requires an antioxidant/reactive oxygen species (ROS)-sensitive mechanism, Eur Cytokine Netw, vol.13, pp.250-260, 2002.

A. Marin-hernandez, J. Gallardo-perez, S. Ralph, S. Rodriguez-enriquez, and R. Moreno-sanchez, HIF-1α Modulates Energy Metabolism in Cancer Cells by Inducing Over-Expression of Specific Glycolytic Isoforms, Mini-Reviews in Medicinal Chemistry, vol.9, issue.9, pp.1084-1101, 2009.
DOI : 10.2174/138955709788922610

I. Baburina and S. Jackowski, Cellular Responses to Excess Phospholipid, Journal of Biological Chemistry, vol.306, issue.14, pp.9400-9408, 1999.
DOI : 10.1074/jbc.273.20.12536

URL : http://www.jbc.org/content/274/14/9400.full.pdf

X. Zhang, C. Zhao, K. Seleznev, K. Song, J. Manfredi et al., Disruption of G1-phase phospholipid turnover by inhibition of Ca2+-independent phospholipase A2 induces a p53-dependent cell-cycle arrest in G1 phase, Journal of Cell Science, vol.119, issue.6, pp.1005-1015, 2006.
DOI : 10.1242/jcs.02821

O. Warburg, F. Wind, and E. Negelein, THE METABOLISM OF TUMORS IN THE BODY, The Journal of General Physiology, vol.8, issue.6, pp.519-530, 1927.
DOI : 10.1085/jgp.8.6.519

M. Tome, M. Briehl, and N. Lutz, Increasing the antioxidant defense in WEHI7.2 cells results in a more tumor-like metabolic profile, International Journal of Molecular Medicine, vol.15, pp.497-501, 2005.
DOI : 10.3892/ijmm.15.3.497

M. Tome, N. Lutz, and M. Briehl, Overexpression of catalase or Bcl-2 alters glucose and energy metabolism concomitant with dexamethasone resistance, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1693, issue.1, pp.57-72, 2004.
DOI : 10.1016/j.bbamcr.2004.05.004

M. Tome, J. Frye, D. Coyle, E. Jacobson, B. Samulitis et al., Lymphoma cells with increased anti-oxidant defenses acquire chemoresistance, Experimental and Therapeutic Medicine, vol.3, issue.5, pp.845-852, 2012.
DOI : 10.3892/etm.2012.487

M. Tonigold, A. Rossmann, M. Meinold, M. Bette, M. Marken et al., A cisplatin-resistant head and neck cancer cell line with cytoplasmic p53mut exhibits ATP-binding cassette transporter upregulation and high glutathione levels, Journal of Cancer Research and Clinical Oncology, vol.1787, issue.6, pp.1689-1704, 2014.
DOI : 10.1016/j.bbabio.2009.02.009

M. Tome, N. Lutz, and M. Briehl, Overexpression of catalase or Bcl-2 delays or prevents alterations in phospholipid metabolism during glucocorticoid-induced apoptosis in WEHI7.2 cells, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1642, issue.3, pp.149-162, 2003.
DOI : 10.1016/j.bbamcr.2003.08.002