M. H. Montané and B. Menand, ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change, Journal of Experimental Botany, vol.16, issue.14, pp.4361-4374, 2013.
DOI : 10.1016/j.drudis.2011.02.008

M. Ren, P. Venglat, S. Qiu, L. Feng, Y. Cao et al., Target of Rapamycin Signaling Regulates Metabolism, Growth, and Life Span in Arabidopsis, The Plant Cell, vol.24, issue.12, pp.4850-4874, 2012.
DOI : 10.1105/tpc.112.107144

Y. Xiong, M. Mccormack, L. Li, Q. Hall, C. Xiang et al., Glucose???TOR signalling reprograms the transcriptome and activates meristems, Nature, vol.138, issue.7444, pp.181-186, 2013.
DOI : 10.1242/dev.057331

A. Racolta, A. C. Bryan, and F. Tax, through control of cell division and cell fate specification, Developmental Dynamics, vol.243, issue.2, p.1, 2014.
DOI : 10.1002/dvdy.24044

J. Lavenus, T. Goh, I. Roberts, S. Guyomarc-'h, M. Lucas et al., Lateral root development in Arabidopsis: fifty shades of auxin, Trends in Plant Science, vol.18, issue.8, pp.450-458, 2013.
DOI : 10.1016/j.tplants.2013.04.006

L. Dolan, K. Janmaat, V. Willemsen, P. Linstead, S. Poethig et al., Scheres, B. Cellular organisation of the Arabidopsis thaliana root, pp.71-84, 1993.

J. R. Wendrich and D. Weijers, The Arabidopsis embryo as a miniature morphogenesis model, New Phytologist, vol.25, issue.1, pp.14-25, 0199.
DOI : 10.1105/tpc.112.107854

M. J. Olszewska, Autoradiographic and ultrastructural study of Cucurbita pepo root cells during their growth and differentiation, Histochemistry, vol.12, issue.2, pp.157-175, 1976.
DOI : 10.1007/BF00495679

S. Inagaki and M. Umeda, Cell-Cycle Control and Plant Development, In International Review of Cell and Molecular Biology Volume, vol.291, pp.227-261, 2011.
DOI : 10.1016/B978-0-12-386035-4.00007-0

S. Scofield, A. Jones, and J. A. Murray, The plant cell cycle in context, Journal of Experimental Botany, vol.65, issue.10, pp.2557-2562, 2014.
DOI : 10.1016/0092-8674(91)90100-D

D. Veylder, L. Larkin, J. C. Schnittger, and A. , Molecular control and function of endoreplication in development and physiology, Trends in Plant Science, vol.16, issue.11, pp.624-634, 2011.
DOI : 10.1016/j.tplants.2011.07.001

URL : https://hal.archives-ouvertes.fr/hal-00638845

Z. Magyar, B. Horvath, S. Khan, B. Mohammed, R. Henriques et al., Arabidopsis E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes, EMBO J, vol.2012, pp.31-1480
DOI : 10.1038/emboj.2012.13

URL : http://emboj.embopress.org/content/embojnl/31/6/1480.full.pdf

J. Van-leene, J. Boruc, G. De-jaeger, E. Russinova, and L. De-veylder, A kaleidoscopic view of the Arabidopsis core cell cycle interactome, Trends in Plant Science, vol.16, issue.3, pp.141-150, 2011.
DOI : 10.1016/j.tplants.2010.12.004

B. Berckmans and L. De-veylder, Transcriptional control of the cell cycle, Current Opinion in Plant Biology, vol.12, issue.5, pp.599-605, 2009.
DOI : 10.1016/j.pbi.2009.07.005

C. Herve, P. Dabos, C. Bardet, A. Jauneau, M. C. Auriac et al., In Vivo Interference with AtTCP20 Function Induces Severe Plant Growth Alterations and Deregulates the Expression of Many Genes Important for Development, PLANT PHYSIOLOGY, vol.149, issue.3, pp.1462-1477, 2009.
DOI : 10.1104/pp.108.126136

C. Li, T. Potuschak, A. Colon-carmona, R. A. Gutierrez, and P. Doerner, Arabidopsis TCP20 links regulation of growth and cell division control pathways, Proc. Natl. Acad. Sci. USA 2005, pp.12978-12983
DOI : 10.1023/A:1006383921517

D. Tremousaygue, L. Garnier, C. Bardet, P. Dabos, C. Herve et al., Internal telomeric repeats and 'TCP domain' protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells, The Plant Journal, vol.19, issue.18, pp.957-966, 2003.
DOI : 10.1074/jbc.M003250200

J. Van-leene, J. Hollunder, D. Eeckhout, G. Persiau, E. Van-de-slijke et al., Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana, Molecular Systems Biology, vol.443, p.397, 2010.
DOI : 10.1007/s11103-006-9019-9

URL : https://hal.archives-ouvertes.fr/hal-01203927

G. S. Cook, A. L. Gronlund, I. Siciliano, N. Spadafora, M. Amini et al., Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery, Journal of Experimental Botany, vol.416, issue.7, pp.2093-2106, 2013.
DOI : 10.1038/416703a

D. Schutter, K. Joubes, J. Cools, T. Verkest, A. Corellou et al., Arabidopsis WEE1 Kinase Controls Cell Cycle Arrest in Response to Activation of the DNA Integrity Checkpoint, THE PLANT CELL ONLINE, vol.19, issue.1, pp.211-225, 2007.
DOI : 10.1105/tpc.106.045047

T. Guerinier, L. Millan, P. Crozet, C. Oury, F. Rey et al., Phosphorylation of p27(KIP1) homologs KRP6 and 7 by SNF1-related protein kinase-1 links plant energy homeostasis and cell proliferation, pp.515-525

J. Blomme, D. Inze, and N. Gonzalez, The cell-cycle interactome: a source of growth regulators?, Journal of Experimental Botany, vol.216, issue.10, pp.2715-2730, 2014.
DOI : 10.1105/tpc.106.043869

URL : https://hal.archives-ouvertes.fr/hal-01601537

D. Dudits, E. Abraham, P. Miskolczi, F. Ayaydin, M. Bilgin et al., Cell-cycle control as a target for calcium, hormonal and developmental signals: the role of phosphorylation in the retinoblastoma-centred pathway, Annals of Botany, vol.40, issue.7, pp.1193-1202, 2011.
DOI : 10.1104/pp.105.072173

M. Wildwater, A. Campilho, J. M. Perez-perez, R. Heidstra, I. Blilou et al., The RETINOBLASTOMA-RELATED Gene Regulates Stem Cell Maintenance in Arabidopsis Roots, Cell, vol.123, issue.7, pp.1337-1349, 2005.
DOI : 10.1016/j.cell.2005.09.042

C. Forzani, E. Aichinger, E. Sornay, V. Willemsen, T. Laux et al., WOX5 Suppresses CYCLIN D Activity to Establish Quiescence at the Center of the Root Stem Cell Niche, WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche, pp.1939-1944, 2014.
DOI : 10.1016/j.cub.2014.07.019

A. K. Sarkar, M. Luijten, S. Miyashima, M. Lenhard, T. Hashimoto et al., Conserved factors regulate signalling in Arabidopsis??thaliana shoot and root stem cell organizers, Nature, vol.125, issue.7137, pp.811-814, 2007.
DOI : 10.1038/nature05703

S. Perilli and S. Sabatini, Analysis of Root Meristem Size Development, Methods Mol. Biol, vol.655, pp.177-187, 2010.
DOI : 10.1007/978-1-60761-765-5_12

C. Gutierrez, The Arabidopsis Cell Division Cycle, The Arabidopsis Book, vol.7, 2009.
DOI : 10.1199/tab.0120

A. Colon-carmona, R. You, T. Haimovitch-gal, and P. Doerner, Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein, The Plant Journal, vol.8, issue.4, pp.503-508, 1999.
DOI : 10.1073/pnas.93.10.4868

M. Sasabe, V. Boudolf, L. De-veylder, D. Inze, P. Genschik et al., Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants, Proc. Natl. Acad. Sci. USA 2011, pp.17844-17849
DOI : 10.1242/jcs.074815

URL : https://hal.archives-ouvertes.fr/hal-00638872

M. Sasabe and Y. Machida, Regulation of organization and function of microtubules by the mitogen-activated protein kinase cascade during plant cytokinesis, Cytoskeleton, vol.12, issue.11, pp.913-918, 2012.
DOI : 10.1073/pnas.0408438102

M. Menges, S. M. De-jager, W. Gruissem, and J. A. Murray, Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control, The Plant Journal, vol.277, issue.4, pp.546-566, 2005.
DOI : 10.1046/j.1365-313X.1995.8060949.x

M. L. Churchman, M. L. Brown, N. Kato, V. Kirik, M. Hulskamp et al., SIAMESE, a Plant-Specific Cell Cycle Regulator, Controls Endoreplication Onset in Arabidopsis thaliana, THE PLANT CELL ONLINE, vol.18, issue.11, pp.3145-3157, 2006.
DOI : 10.1105/tpc.106.044834

B. Wen, J. Nieuwland, and J. A. Murray, The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication, Journal of Experimental Botany, vol.20, issue.4, pp.1135-1144, 2013.
DOI : 10.1007/s00299-001-0434-8

V. Boudolf, T. Lammens, J. Boruc, J. Van-leene, H. Van-den-daele et al., CDKB1;1 Forms a Functional Complex with CYCA2;3 to Suppress Endocycle Onset, PLANT PHYSIOLOGY, vol.150, issue.3, pp.1482-1493, 2009.
DOI : 10.1104/pp.109.140269

H. O. Lee, J. M. Davidson, and R. J. Duronio, Endoreplication: polyploidy with purpose, Genes & Development, vol.23, issue.21, pp.2461-2477, 2009.
DOI : 10.1101/gad.1829209

URL : http://genesdev.cshlp.org/content/23/21/2461.full.pdf

G. Jovtchev, V. Schubert, A. Meister, and M. Barow, Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms, Cytogenetic and Genome Research, vol.58, issue.1, pp.77-82, 2006.
DOI : 10.1007/s00412-004-0323-3

E. Sliwinska, J. Mathur, and J. D. Bewley, On the relationship between endoreduplication and collet hair initiation and tip growth, as determined using six Arabidopsis thaliana root-hair mutants, Journal of Experimental Botany, vol.64, issue.11, 2015.
DOI : 10.1093/jxb/ert009

E. Forouzesh, A. Goel, S. A. Mackenzie, and J. A. Turner, extraction of Arabidopsis cell turgor pressure using nanoindentation in conjunction with finite element modeling, The Plant Journal, vol.32, issue.3, pp.509-520, 2013.
DOI : 10.1093/jxb/32.6.1181

M. H. Wilson, T. J. Holman, I. Sorensen, E. Cancho-sanchez, D. M. Wells et al., Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone, Frontiers in Cell and Developmental Biology, vol.218, p.10, 2015.
DOI : 10.1007/s00425-003-1147-8

D. L. Rayle and R. E. Cleland, The Acid Growth Theory of auxin-induced cell elongation is alive and well., PLANT PHYSIOLOGY, vol.99, issue.4, pp.1271-1274, 1992.
DOI : 10.1104/pp.99.4.1271

S. Mcqueen-mason and D. J. Cosgrove, Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension., Proc. Natl. Acad. Sci, pp.6574-6578, 1994.
DOI : 10.1073/pnas.91.14.6574

S. Li, L. Bashline, L. Lei, and Y. Gu, Cellulose Synthesis and Its Regulation, The Arabidopsis Book, vol.12, p.169, 2014.
DOI : 10.1199/tab.0169

URL : http://europepmc.org/articles/pmc3894906?pdf=render

V. Barragan, E. O. Leidi, Z. Andres, L. Rubio, A. De-luca et al., Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis, The Plant Cell, vol.24, issue.3, pp.1127-1142, 2012.
DOI : 10.1105/tpc.111.095273

J. Foreman, V. Demidchik, J. H. Bothwell, P. Mylona, H. Miedema et al., Reactive oxygen species produced by NADPH oxidase regulate plant cell growth, Nature, vol.15, issue.6930, pp.442-446, 2003.
DOI : 10.1046/j.1365-313X.1998.00188.x

G. R. Cramer, J. Lynch, A. Lauchli, and E. Epstein, Influx of Na+, K+, and Ca2+ into Roots of Salt-Stressed Cotton Seedlings : Effects of Supplemental Ca2+, PLANT PHYSIOLOGY, vol.83, issue.3, pp.510-516, 1987.
DOI : 10.1104/pp.83.3.510

A. Bichet, T. Desnos, S. Turner, and O. Gradjean, Höfte, H. BOTERO1 is required for normal orientation of cortical microtubules and anisotropic cell expansion in Arabidopsis, Plant J, vol.25, pp.137-148, 2001.

D. H. Burk, B. Liu, R. Zhong, W. H. Morrison, and Z. H. Ye, A Katanin-like Protein Regulates Normal Cell Wall Biosynthesis and Cell Elongation, THE PLANT CELL ONLINE, vol.13, issue.4, pp.807-827, 2001.
DOI : 10.1105/tpc.13.4.807

Z. Kong, M. Ioki, S. Braybrook, S. Li, Z. H. Ye et al., Kinesin-4 Functions in Vesicular Transport on Cortical Microtubules and Regulates Cell Wall Mechanics during Cell Elongation in Plants, Molecular Plant, vol.8, issue.7, pp.1011-1023, 2015.
DOI : 10.1016/j.molp.2015.01.004

D. Cnodder, T. Vissenberg, K. Van-der-straeten, D. Verbelen, and J. P. , Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane- 1-carboxylic acid: a matter of apoplastic reactions, New Phytologist, vol.58, issue.3, pp.541-550, 2005.
DOI : 10.1007/BF00029144

N. D. Pires, K. Yi, H. Breuninger, B. Catarino, B. Menand et al., Recruitment and remodeling of an ancient gene regulatory network during land plant evolution, Proc. Natl. Acad. Sci. USA 2013, pp.9571-9576
DOI : 10.1098/rstb.2011.0252

G. E. Schaller, A. Bishopp, and J. J. Kieber, The Yin-Yang of Hormones: Cytokinin and Auxin Interactions in Plant Development, The Plant Cell Online, vol.27, issue.1, pp.44-63, 2015.
DOI : 10.1105/tpc.114.133595

D. Vos, D. Vissenberg, K. Broeckhove, J. Beemster, and G. , Putting theory to the test: Which regulatory mechanisms can drive realistic growth of a root?, PLoS Comput. Biol, vol.10, 2014.

Q. Chen, X. Dai, H. De-paoli, Y. Cheng, Y. Takebayashi et al., Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots, Plant and Cell Physiology, vol.24, issue.6, pp.1072-1079, 2014.
DOI : 10.1046/j.1365-313x.2000.00868.x

D. Ioio, R. Nakamura, K. Moubayidin, L. Perilli, S. Taniguchi et al., A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem, Science, vol.449, issue.4, pp.1380-1384, 2008.
DOI : 10.1105/tpc.104.029272

I. Blilou, J. Xu, M. Wildwater, V. Willemsen, I. Paponov et al., The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots, Nature, vol.125, issue.7021, pp.39-44, 2005.
DOI : 10.1046/j.1365-313X.2003.01705.x

L. Galweiler, C. Guan, A. Muller, E. Wisman, K. Mendgen et al., Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue, Science, vol.112, issue.1, pp.2226-2230, 1998.
DOI : 10.1104/pp.112.1.131

V. A. Grieneisen, J. Xu, A. F. Marée, P. Hogeweg, and B. Scheres, Auxin transport is sufficient to generate a maximum and gradient guiding root growth, Nature, vol.106, issue.7165, pp.1008-1013, 2007.
DOI : 10.1104/pp.106.4.1335

L. Yu, W. Li, and H. I. Hijazi, Systems analysis of auxin transport in the Arabidopsis root apex, Plant Cell, vol.26, pp.862-875, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268575

L. Moubayidin, S. Perilli, R. Dello-ioio, R. Di-mambro, P. Costantino et al., The Rate of Cell Differentiation Controls the Arabidopsis Root Meristem Growth Phase, Current Biology, vol.20, issue.12, pp.1138-1143, 2010.
DOI : 10.1016/j.cub.2010.05.035

K. Mockaitis and M. Estelle, Auxin Receptors and Plant Development: A New Signaling Paradigm, Annual Review of Cell and Developmental Biology, vol.24, issue.1, pp.55-80, 2008.
DOI : 10.1146/annurev.cellbio.23.090506.123214

A. P. Mahonen, K. Ten-tusscher, R. Siligato, O. Smetana, S. Diaz-trivino et al., PLETHORA gradient formation mechanism separates auxin responses, Nature, vol.14, issue.7525, pp.125-129, 2014.
DOI : 10.1105/tpc.006437

W. Zhou, L. Wei, J. Xu, Q. Zhai, H. Jiang et al., Arabidopsis Tyrosylprotein Sulfotransferase Acts in the Auxin/PLETHORA Pathway in Regulating Postembryonic Maintenance of the Root Stem Cell Niche, THE PLANT CELL ONLINE, vol.22, issue.11, pp.3692-3709, 2010.
DOI : 10.1105/tpc.110.075721

W. Zhang, R. Swarup, M. Bennett, G. E. Schaller, and J. J. Kieber, Cytokinin Induces Cell Division in the Quiescent Center of the Arabidopsis Root Apical Meristem, Current Biology, vol.23, issue.20, pp.1979-1989, 2013.
DOI : 10.1016/j.cub.2013.08.008

A. Cruz-ramirez, S. Diaz-trivino, I. Blilou, V. A. Grieneisen, R. Sozzani et al., A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division, Cell, vol.150, issue.5, pp.1002-1015, 2012.
DOI : 10.1016/j.cell.2012.07.017

P. C. Doerner, How are plant growth regulators involved in cell cycle control? Plant Horm, Res, pp.1-27, 2000.

A. B. Tromas, P. Muller, T. Khodus, I. A. Paponov, K. Palme et al., A.; Scheres, B.; et al. The AUXIN BINDING PROTEIN 1 is required for differential auxin responses mediating root growth, PLoS ONE, vol.4, pp.1-11, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00939402

F. Roudier, E. Fedorova, M. Lebris, P. Lecomte, J. Gyorgyey et al., The Medicago Species A2-Type Cyclin Is Auxin Regulated and Involved in Meristem Formation But Dispensable for Endoreduplication-Associated Developmental Programs, PLANT PHYSIOLOGY, vol.131, issue.3, pp.1091-1103, 2003.
DOI : 10.1104/pp.102.011122

URL : https://hal.archives-ouvertes.fr/hal-00134869

T. Ishida, S. Fujiwara, K. Miura, N. Stacey, M. Yoshimura et al., SUMO E3 Ligase HIGH PLOIDY2 Regulates Endocycle Onset and Meristem Maintenance in Arabidopsis, Sugimoto, K. SUMO E3 ligase HIGH PLOIDY2 regulates endocycle onset and meristem maintenance in Arabidopsis, pp.2284-2297, 2009.
DOI : 10.1105/tpc.109.068072

URL : http://www.plantcell.org/content/plantcell/21/8/2284.full.pdf

Y. Okushima, K. Shimizu, T. Ishida, K. Sugimoto, and M. Umeda, Differential regulation of B2-type CDK accumulation in Arabidopsis roots, Plant Cell Reports, vol.1, issue.6, pp.1033-1040, 2014.
DOI : 10.4161/psb.1.6.3511

N. Takahashi, T. Kajihara, C. Okamura, Y. Kim, Y. Katagiri et al., Cytokinins Control Endocycle Onset by Promoting the Expression of an APC/C Activator in Arabidopsis Roots, Current Biology, vol.23, issue.18, pp.1812-1817, 2013.
DOI : 10.1016/j.cub.2013.07.051

A. Rück, K. Palms, M. A. Venis, R. M. Napier, and H. Felle, Patch-clamp analysis establishes a role for an auxin binding protein in the auxin stimulation of plasma membrane current in Zea mays protoplasts, The Plant Journal, vol.4, issue.1, pp.41-46, 1993.
DOI : 10.1046/j.1365-313X.1993.04010041.x

G. Thiel, M. R. Blatt, M. D. Fricker, I. R. White, and P. Millner, Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin-binding protein C terminus., Proc. Natl. Acad. Sci. USA 1993, pp.11493-11497
DOI : 10.1073/pnas.90.24.11493

E. B. Blancaflor and K. H. Hasenstein, Growth and Microtubule Orientation of Zea mays Roots Subjected to Osmotic Stress, International Journal of Plant Sciences, vol.156, issue.6, pp.774-783, 1995.
DOI : 10.1086/297301

J. Xu and B. Scheres, Cell polarity: ROPing the ends together, Current Opinion in Plant Biology, vol.8, issue.6, pp.613-618, 2005.
DOI : 10.1016/j.pbi.2005.09.003

X. Chen, L. Grandont, H. Li, R. Hauschild, S. Paque et al., Perrot-Rechenmann, C.; Friml, J. Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules, Nature, vol.516, pp.90-93, 2014.

A. N. Stepanova, J. Robertson-hoyt, J. Yun, L. M. Benavente, D. Y. Xie et al., TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development, Cell, vol.133, issue.1, pp.177-191, 2008.
DOI : 10.1016/j.cell.2008.01.047

URL : https://doi.org/10.1016/j.cell.2008.01.047

S. Ubeda-tomas, G. T. Beemster, and M. J. Bennett, Hormonal regulation of root growth: integrating local activities into global behaviour, Trends in Plant Science, vol.17, issue.6, pp.326-331, 2012.
DOI : 10.1016/j.tplants.2012.02.002

J. Heitman, N. R. Movva, and M. N. Hall, Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast, Science, vol.88, issue.3, pp.905-909, 1991.
DOI : 10.1073/pnas.88.3.1029

M. Laplante and D. M. Sabatini, mTOR Signaling in Growth Control and Disease, Cell, vol.149, issue.2, pp.274-293
DOI : 10.1016/j.cell.2012.03.017

D. Ruggero and N. Sonenberg, The Akt of translational control, Oncogene, vol.24, issue.50, pp.7426-7434, 2005.
DOI : 10.1038/sj.onc.1209098

V. Zinzalla, D. Stracka, W. Oppliger, and M. N. Hall, Activation of mTORC2 by Association with the Ribosome, Cell, vol.144, issue.5, pp.757-768, 2011.
DOI : 10.1016/j.cell.2011.02.014

D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint, Molecular Cell, vol.30, issue.2, pp.214-226, 2008.
DOI : 10.1016/j.molcel.2008.03.003

J. Serfontein, R. E. Nisbet, C. J. Howe, and P. J. De-vries, Evolution of the TSC1/TSC2-TOR Signaling Pathway, Science Signaling, vol.3, issue.128, p.49, 2010.
DOI : 10.1126/scisignal.2000803

T. J. Van-dam, F. J. Zwartkruis, J. L. Bos, and B. Snel, Evolution of the TOR Pathway, Journal of Molecular Evolution, vol.12, issue.Suppl 2, pp.209-220, 2011.
DOI : 10.1038/nrm3025

J. L. Crespo, S. Diaz-troya, and F. J. Florencio, Inhibition of Target of Rapamycin Signaling by Rapamycin in the Unicellular Green Alga Chlamydomonas reinhardtii, PLANT PHYSIOLOGY, vol.139, issue.4, pp.1736-1749, 2005.
DOI : 10.1104/pp.105.070847

S. Imamura, A. Ishiwata, S. Watanabe, H. Yoshikawa, and K. Tanaka, Expression of budding yeast FKBP12 confers rapamycin susceptibility to the unicellular red alga Cyanidioschyzon merolae, Biochemical and Biophysical Research Communications, vol.439, issue.2, pp.2013-264
DOI : 10.1016/j.bbrc.2013.08.045

M. M. Mahfouz, S. Kim, A. J. Delauney, and D. P. Verma, Arabidopsis TARGET OF RAPAMYCIN Interacts with RAPTOR, Which Regulates the Activity of S6 Kinase in Response to Osmotic Stress Signals, THE PLANT CELL ONLINE, vol.18, issue.2, pp.477-490, 2006.
DOI : 10.1105/tpc.105.035931

R. Sormani, L. Yao, B. Menand, N. Ennar, C. Lecampion et al., Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility, BMC Plant Biology, vol.7, issue.1, 2007.
DOI : 10.1186/1471-2229-7-26

B. Menand, T. Desnos, L. Nussaume, F. Berger, D. Bouchez et al., Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene, Proc. Natl. Acad. Sci. USA 2002, pp.6422-6427
DOI : 10.1016/S0168-9525(97)01358-9

M. Ren, S. Qiu, P. Venglat, D. Xiang, L. Feng et al., Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis, PLANT PHYSIOLOGY, vol.155, issue.3, pp.1367-1382, 2011.
DOI : 10.1104/pp.110.169045

R. Henriques, L. Bogre, B. Horvath, and Z. Magyar, Balancing act: matching growth with environment by the TOR signalling pathway, Journal of Experimental Botany, vol.34, issue.10, pp.2691-2701, 2014.
DOI : 10.1111/j.1365-3040.2011.02286.x

D. Deprost, L. Yao, R. Sormani, M. Moreau, G. Leterreux et al., The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep, pp.864-870, 2007.

Y. Xiong and J. Sheen, Rapamycin and Glucose-Target of Rapamycin (TOR) Protein Signaling in Plants, Journal of Biological Chemistry, vol.287, issue.4, pp.2836-2842, 2012.
DOI : 10.1104/pp.103.031005

G. H. Anderson, B. Veit, and M. R. Hanson, The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth, BMC Biol, vol.3, pp.1-11, 2005.

D. Deprost, H. N. Truong, C. Robaglia, and C. Meyer, An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development, Biochemical and Biophysical Research Communications, vol.326, issue.4, pp.844-850, 2005.
DOI : 10.1016/j.bbrc.2004.11.117

M. Moreau, M. Azzopardi, G. Clement, T. Dobrenel, C. Marchive et al., Mutations in the Arabidopsis Homolog of LST8/G??L, a Partner of the Target of Rapamycin Kinase, Impair Plant Growth, Flowering, and Metabolic Adaptation to Long Days, THE PLANT CELL ONLINE, vol.24, issue.2, pp.463-481, 2012.
DOI : 10.1105/tpc.111.091306

URL : https://hal.archives-ouvertes.fr/hal-01004282

C. S. Ahn, H. K. Ahn, and H. S. Pai, Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway, Journal of Experimental Botany, vol.12, issue.3, pp.827-840, 2015.
DOI : 10.1038/nrm3025

C. Robaglia, B. Menand, Y. Lei, R. Sormani, M. Nicolai et al., Plant growth: the translational connection, Biochemical Society Transactions, vol.32, issue.4, pp.581-584, 2004.
DOI : 10.1042/BST0320581

Y. Liu and D. C. Bassham, TOR Is a Negative Regulator of Autophagy in Arabidopsis thaliana, PLoS ONE, vol.58, issue.7, p.11883, 2010.
DOI : 10.1371/journal.pone.0011883.t001

M. Schepetilnikov, M. Dimitrova, E. Mancera-martinez, A. Geldreich, M. Keller et al., TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h, The EMBO Journal, vol.269, issue.8, pp.1087-1102, 2013.
DOI : 10.1016/j.cell.2011.02.014

URL : https://hal.archives-ouvertes.fr/hal-00820088

M. Schepetilnikov, K. Kobayashi, A. Geldreich, C. Caranta, C. Robaglia et al., Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation, The EMBO Journal, vol.269, issue.7, pp.1343-1356, 2011.
DOI : 10.1016/j.molcel.2010.05.017

URL : http://embojnl.embopress.org/content/embojnl/30/7/1343.full.pdf

F. Turck, S. C. Kozma, G. Thomas, and F. Nagy, Function In Vivo, Molecular and Cellular Biology, vol.18, issue.4, pp.2038-2044, 1998.
DOI : 10.1128/MCB.18.4.2038

F. Turck, F. Zilbermann, S. C. Kozma, G. Thomas, and F. Nagy, Phytohormones Participate in an S6 Kinase Signal Transduction Pathway in Arabidopsis, PLANT PHYSIOLOGY, vol.134, issue.4, pp.1527-1535, 2004.
DOI : 10.1104/pp.103.035873

A. J. Williams, J. Werner-fraczek, I. F. Chang, and J. Bailey-serres, Regulated Phosphorylation of 40S Ribosomal Protein S6 in Root Tips of Maize, PLANT PHYSIOLOGY, vol.132, issue.4, pp.2086-2097, 2003.
DOI : 10.1104/pp.103.022749

S. I. Gharbi, M. J. Zvelebil, S. J. Shuttleworth, T. Hancox, N. Saghir et al., Exploring the specificity of the PI3K family inhibitor LY294002, Biochemical Journal, vol.404, issue.1, pp.15-21, 2007.
DOI : 10.1042/BJ20061489

URL : https://hal.archives-ouvertes.fr/hal-00478676

A. Creff, R. Sormani, and T. Desnos, The two Arabidopsis RPS6 genes, encoding for cytoplasmic ribosomal proteins S6, are functionally equivalent, Plant Molecular Biology, vol.136, issue.4-5, pp.533-546, 2010.
DOI : 10.1128/MCB.18.4.2038

B. Magnuson, B. Ekim, and D. C. Fingar, Regulation and function of ribosomal protein S6 kinase (S6K) within mTOR signalling networks, Biochemical Journal, vol.460, issue.1, pp.1-21, 2012.
DOI : 10.1016/j.febslet.2010.01.017

R. Henriques, Z. Magyar, A. Monardes, S. Khan, C. Zalejski et al., Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1???E2F pathway activity, The EMBO Journal, vol.269, issue.17, pp.2979-2993, 2010.
DOI : 10.1046/j.1365-313X.2000.00868.x

URL : http://emboj.embopress.org/content/embojnl/29/17/2979.full.pdf

D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. V. Wilson et al., An ???Electronic Fluorescent Pictograph??? Browser for Exploring and Analyzing Large-Scale Biological Data Sets, PLoS ONE, vol.39, issue.8, p.718, 2007.
DOI : 10.1371/journal.pone.0000718.g009

C. Caldana, Y. Li, A. Leisse, Y. Zhang, L. Bartholomaeus et al., Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana, pp.897-909

R. Loewith and M. N. Hall, Target of Rapamycin (TOR) in Nutrient Signaling and Growth Control, Genetics, vol.189, issue.4, pp.1177-1201, 2011.
DOI : 10.1534/genetics.111.133363

D. G. Hardie, AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer, Biochemical Society Transactions, vol.62, issue.1, pp.39-40, 2011.
DOI : 10.1073/pnas.0912426107

C. Polge, M. Thomas, . Snf1, and . Ampk, SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci, pp.20-28, 2007.

C. Robaglia, M. Thomas, and C. Meyer, Sensing nutrient and energy status by SnRK1 and TOR kinases, Current Opinion in Plant Biology, vol.15, issue.3, pp.301-307, 2012.
DOI : 10.1016/j.pbi.2012.01.012

URL : https://hal.archives-ouvertes.fr/hal-01004183

S. Emanuelle, M. I. Hossain, I. E. Moller, H. L. Pedersen, A. M. Van-de-meene et al., SnRK1 from Arabidopsis thaliana is an atypical AMPK, pp.183-192
DOI : 10.1111/tpj.12813

URL : http://onlinelibrary.wiley.com/doi/10.1111/tpj.12813/pdf

Y. Matsuzaki, M. Ogawa-ohnishi, A. Mori, and Y. Matsubayashi, Secreted Peptide Signals Required for Maintenance of Root Stem Cell Niche in Arabidopsis, Science, vol.133, issue.3, pp.1065-1067, 2010.
DOI : 10.1242/dev.02238

B. Menand, Reverse Genetics Study of the Gene Coding for the TARGET OF RAPAMYCIN protein in Arabidopsis thaliana (AtTOR), the Homolog of a Kinase Controling Growth in Eucaryotes, 2002.

E. H. Rademacher, B. Moller, and A. S. Lokerse, Llavata-Peris, C.I.; van den Berg, W.; Weijers, D. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family, pp.597-606

C. Betz and M. N. Hall, Where is mTOR and what is it doing there?, The Journal of Cell Biology, vol.97, issue.4, pp.563-574, 2013.
DOI : 10.1152/ajpheart.01138.2010

URL : http://jcb.rupress.org/content/jcb/203/4/563.full.pdf

A. P. Oliveira, C. Ludwig, M. Zampieri, H. Weisser, R. Aebersold et al., Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis, Science Signaling, vol.3, issue.5814, p.4, 2015.
DOI : 10.1186/1752-0509-3-37