E. Bertram, D. Zhang, P. Mangan, N. Fountain, and D. Rempe, Functional anatomy of limbic epilepsy: a proposal for central synchronization of a diffusely hyperexcitable network, Epilepsy Research, vol.32, issue.1-2, pp.194-205, 1998.
DOI : 10.1016/S0920-1211(98)00051-5

F. Bartolomei, F. Wendling, J. Bellanger, J. Regis, and P. Chauvel, Neural networks involving the medial temporal structures in temporal lobe epilepsy, Clinical Neurophysiology, vol.112, issue.9, pp.1746-60, 2001.
DOI : 10.1016/S1388-2457(01)00591-0

F. Wendling and F. Bartolomei, Modeling EEG signals and interpreting measures of relationship during temporal-lobe seizures: an approach to the study of epileptogenic networks, Epileptic Disord, pp.67-78, 2001.

H. Meeren, J. Pijn, V. Luijtelaar, E. Coenen, A. et al., Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats, The Journal of Neuroscience, vol.22, issue.4, pp.1480-95, 2002.
DOI : 10.1523/JNEUROSCI.22-04-01480.2002

I. Timofeev and M. Steriade, Neocortical seizures: initiation, development and cessation, Neuroscience, vol.123, issue.2, pp.299-336, 2004.
DOI : 10.1016/j.neuroscience.2003.08.051

J. Huguenard and D. Mccormick, Thalamic synchrony and dynamic regulation of global forebrain oscillations, Trends in Neurosciences, vol.30, issue.7, pp.350-356, 2007.
DOI : 10.1016/j.tins.2007.05.007

F. Lado and S. Moshe, How do seizures stop?, Epilepsia, vol.52, issue.Suppl. 5, pp.1651-64, 2008.
DOI : 10.1007/978-1-4757-6376-8_9

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1528-1167.2008.01669.x/pdf

L. Topolnik, M. Steriade, and I. Timofeev, Partial Cortical Deafferentation Promotes Development of Paroxysmal Activity, Cerebral Cortex, vol.13, issue.8, pp.883-93, 2003.
DOI : 10.1093/cercor/13.8.883

S. Ponten, F. Bartolomei, and C. Stam, Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures, Clinical Neurophysiology, vol.118, issue.4, pp.918-945, 2007.
DOI : 10.1016/j.clinph.2006.12.002

K. Schindler, H. Leung, C. Elger, K. Lehnertz, D. Mccormick et al., Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG On the cellular and network bases of epileptic seizures, Brain Annu Rev Physiol, vol.130, issue.63, pp.65-77, 2001.

W. Turski, E. Cavalheiro, Z. Bortolotto, L. Mello, M. Schwarz et al., Seizures produced by pilocarpine in mice: A behavioral, electroencephalographic and morphological analysis, Brain Research, vol.321, issue.2, pp.237-53, 1984.
DOI : 10.1016/0006-8993(84)90177-X

D. Clifford, J. Olney, A. Maniotis, R. Collins, and C. Zorumski, The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures, Neuroscience, vol.23, issue.3, pp.953-68, 1987.
DOI : 10.1016/0306-4522(87)90171-0

R. Cassidy and K. Gale, Mediodorsal Thalamus Plays a Critical Role in the Development of Limbic Motor Seizures, The Journal of Neuroscience, vol.18, issue.21, pp.9002-9011, 1998.
DOI : 10.1523/JNEUROSCI.18-21-09002.1998

E. Bertram and C. Scott, The Pathological Substrate of Limbic Epilepsy: Neuronal Loss in the Medial Dorsal Thalamic Nucleus as the Consistent Change, Epilepsia, vol.31, issue.s6, 2000.
DOI : 10.1002/ana.410430110

E. Bertram, P. Mangan, D. Zhang, C. Scott, and J. Williamson, The Midline Thalamus: Alterations and a Potential Role in Limbic Epilepsy, Epilepsia, vol.74, issue.8, pp.967-78, 2001.
DOI : 10.1016/S0306-4522(00)00358-4

E. Bertram, D. Zhang, and J. Williamson, Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures, Epilepsia, vol.21, issue.2, pp.256-68, 2008.
DOI : 10.1002/cne.903020308

M. Langlois, P. Polack, H. Bernard, O. David, S. Charpier et al., Involvement of the Thalamic Parafascicular Nucleus in Mesial Temporal Lobe Epilepsy, Journal of Neuroscience, vol.30, issue.49, pp.16523-16558, 2010.
DOI : 10.1523/JNEUROSCI.1109-10.2010

URL : https://hal.archives-ouvertes.fr/inserm-00593989

C. Decarli, J. Hatta, S. Fazilat, W. Gaillard, and W. Theodore, Extratemporal atrophy in patients with complex partial seizures of left temporal origin, Annals of Neurology, vol.44, issue.1, pp.41-46, 1998.
DOI : 10.1212/WNL.44.8.1411

S. Dreifuss, F. Vingerhoets, F. Lazeyras, S. Andino, L. Spinelli et al., Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy, Neurology, vol.57, issue.9, pp.1636-1677, 2001.
DOI : 10.1212/WNL.57.9.1636

A. Bernasconi, N. Bernasconi, J. Natsume, S. Antel, F. Andermann et al., Magnetic resonance spectroscopy and imaging of the thalamus in idiopathic generalized epilepsy, Brain, vol.126, issue.11, pp.2447-54, 2003.
DOI : 10.1093/brain/awg249

J. Natsume, N. Bernasconi, F. Andermann, and A. Bernasconi, MRI volumetry of the thalamus in temporal, extratemporal, and idiopathic generalized epilepsy, Neurology, vol.60, issue.8, 2003.
DOI : 10.1212/01.WNL.0000058764.34968.C2

L. Bonilha, C. Rorden, G. Castellano, F. Pereira, P. Rio et al., Voxel-Based Morphometry Reveals Gray Matter Network Atrophy in Refractory Medial Temporal Lobe Epilepsy, Archives of Neurology, vol.61, issue.9, pp.1379-84, 2004.
DOI : 10.1001/archneur.61.9.1379

N. Khan, K. Leenders, M. Hajek, P. Maguire, J. Missimer et al., Thalamic glucose metabolism in temporal lobe epilepsy measured with 18F-FDG positron emission tomography (PET), Epilepsy Research, vol.28, issue.3, pp.233-276, 1997.
DOI : 10.1016/S0920-1211(97)00049-1

C. Juhasz, F. Nagy, C. Watson, D. Silva, E. Muzik et al., Glucose and [11C]flumazenil positron emission tomography abnormalities of thalamic nuclei in temporal lobe epilepsy, Neurology, vol.53, issue.9, pp.2037-2082, 1999.
DOI : 10.1212/WNL.53.9.2037

A. Newberg, A. Alavi, J. Berlin, P. Mozley, M. O-'connor et al., Ipsilateral and contralateral thalamic hypometabolism as a predictor of outcome after temporal lobectomy for seizures, J Nucl Med, vol.41, pp.1964-1972, 2000.

K. Benedek, C. Juhasz, O. Muzik, D. Chugani, and H. Chugani, Metabolic Changes of Subcortical Structures in Intractable Focal Epilepsy, Epilepsia, vol.42, issue.9, pp.1100-1105, 2004.
DOI : 10.1006/nimg.2000.0606

H. Blumenfeld, K. Mcnally, S. Vanderhill, A. Paige, R. Chung et al., Positive and Negative Network Correlations in Temporal Lobe Epilepsy, Cerebral Cortex, vol.14, issue.8, pp.892-902, 2004.
DOI : 10.1523/JNEUROSCI.22-08-03277.2002

M. Guye, J. Regis, M. Tamura, F. Wendling, A. Mcgonigal et al., The role of corticothalamic coupling in human temporal lobe epilepsy, Brain, vol.129, issue.7, pp.1917-1945, 2006.
DOI : 10.1093/brain/awl151

L. Maillard, J. Vignal, M. Gavaret, M. Guye, A. Biraben et al., Semiologic and Electrophysiologic Correlations in Temporal Lobe Seizure Subtypes, Epilepsia, vol.63, issue.1, 2004.
DOI : 10.1212/01.WNL.0000137037.56916.3F

J. Talairach, J. Bancaud, A. Bonis, G. Szikla, S. Trottier et al., Surgical therapy for frontal epilepsies, Adv Neurol, vol.57, pp.707-739, 1992.

F. Bartolomei, F. Wendling, J. Regis, M. Gavaret, M. Guye et al., Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy, Epilepsy Research, vol.61, issue.1-3, pp.89-104, 2004.
DOI : 10.1016/j.eplepsyres.2004.06.006

J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain, p.Thieme, 1988.

G. Schaltenbrand and W. Wahren, Atlas for Stereotaxy of the Human Brain. With an Accompanying Guide, 1977.

M. Arthuis, L. Valton, J. Regis, P. Chauvel, F. Wendling et al., Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical???subcortical synchronization, Brain, vol.112, issue.8, pp.2091-101, 2009.
DOI : 10.1016/S1388-2457(01)00547-8

URL : https://hal.archives-ouvertes.fr/hal-00911258

J. Pijn, L. Silva, and F. , Propagation of Electrical Activity: Nonlinear Associations and Time Delays between EEG Signals, Basic Mechanisms of the EEG, pp.41-61, 1993.
DOI : 10.1007/978-1-4612-0341-4_4

F. Wendling, F. Bartolomei, J. Bellanger, and P. Chauvel, Interpretation of interdependencies in epileptic signals using a macroscopic physiological model of the EEG, Clinical Neurophysiology, vol.112, issue.7, pp.1201-1219, 2001.
DOI : 10.1016/S1388-2457(01)00547-8

M. Chavez, L. Van-quyen, M. Navarro, V. Baulac, M. Martinerie et al., Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings, IEEE Transactions on Biomedical Engineering, vol.50, issue.5, pp.571-83, 2003.
DOI : 10.1109/TBME.2003.810696

B. Colombet, M. Woodman, J. Badier, and C. Benar, AnyWave: A cross-platform and modular software for visualizing and processing electrophysiological signals, Journal of Neuroscience Methods, vol.242, pp.118-144, 2015.
DOI : 10.1016/j.jneumeth.2015.01.017

URL : https://hal.archives-ouvertes.fr/hal-01323171

M. Steriade and F. Amzica, Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity, Journal of Neurophysiology, vol.72, issue.5, pp.2051-69, 1994.
DOI : 10.1152/jn.1994.72.5.2051

S. Schiff, T. Sauer, R. Kumar, and S. Weinstein, Neuronal spatiotemporal pattern discrimination: The dynamical evolution of seizures, NeuroImage, vol.28, issue.4, pp.1043-55, 2005.
DOI : 10.1016/j.neuroimage.2005.06.059

L. Turski, E. Cavalheiro, M. Schwarz, W. Turski, D. M. Mello et al., Susceptibility to seizures produced by pilocarpine in rats after microinjection of isonnazid or ??-vinyl-GABA into the substantia nigra, Brain Research, vol.370, issue.2, pp.294-309, 1986.
DOI : 10.1016/0006-8993(86)90484-1

D. Rosenberg, F. Mauguiere, G. Demarquay, P. Ryvlin, J. Isnard et al., Involvement of Medial Pulvinar Thalamic Nucleus in Human Temporal Lobe Seizures, Epilepsia, vol.51, issue.1, pp.98-107, 2006.
DOI : 10.1093/brain/awh454

D. Rosenberg, F. Mauguiere, H. Catenoix, I. Faillenot, and M. Magnin, Reciprocal Thalamocortical Connectivity of the Medial Pulvinar: A Depth Stimulation and Evoked Potential Study in Human Brain, Cerebral Cortex, vol.117, issue.6, pp.1462-73, 2009.
DOI : 10.1016/j.clinph.2005.09.015

C. Deransart and A. Depaulis, The control of seizures by the basal ganglia? A review of experimental data, Epileptic Disord, vol.4, pp.61-72, 2002.

R. Insausti, D. Amaral, and W. Cowan, The entorhinal cortex of the monkey: III. Subcortical afferents, The Journal of Comparative Neurology, vol.4, issue.3, pp.396-408, 1987.
DOI : 10.1007/978-1-4684-7971-3_1

K. Grieve, C. Acuna, and J. Cudeiro, The primate pulvinar nuclei: vision and action, Trends in Neurosciences, vol.23, issue.1, pp.35-44, 2000.
DOI : 10.1016/S0166-2236(99)01482-4

E. Jones, Viewpoint: the core and matrix of thalamic organization, Neuroscience, vol.85, issue.2, pp.331-376, 1998.
DOI : 10.1016/S0306-4522(97)00581-2

M. Munkle, H. Waldvogel, and R. Faull, The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus, Journal of Chemical Neuroanatomy, vol.19, issue.3, pp.155-73, 2000.
DOI : 10.1016/S0891-0618(00)00060-0

E. Jones, Synchrony in the Interconnected Circuitry of the Thalamus and Cerebral Cortex, Annals of the New York Academy of Sciences, vol.282, issue.1, pp.10-23, 2009.
DOI : 10.1113/jphysiol.1984.sp015154

S. Shipp, The functional logic of cortico-pulvinar connections, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.358, issue.1438, pp.1605-1629, 2003.
DOI : 10.1098/rstb.2002.1213

R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry et al., Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy, Epilepsia, vol.301, issue.5, pp.899-908, 2010.
DOI : 10.1001/archneurpsyc.1937.02260220069003