S. Browne, A. Bowling, U. Macgarvey, M. Baik, S. Berger et al., Oxidative damage and metabolic dysfunction in Huntington's disease: Selective vulnerability of the basal ganglia, Annals of Neurology, vol.84, issue.5, pp.646-653, 1997.
DOI : 10.1212/WNL.39.9.1203

M. Gu, M. Gash, V. Mann, F. Javoy-agid, J. Cooper et al., Mitochondrial defect in Huntington's disease caudate nucleus, Annals of Neurology, vol.61, issue.3, pp.385-389, 1996.
DOI : 10.1017/S0317167100032212

L. Cui, H. Jeong, F. Borovecki, C. Parkhurst, N. Tanese et al., Transcriptional Repression of PGC-1?? by Mutant Huntingtin Leads to Mitochondrial Dysfunction and Neurodegeneration, Cell, vol.127, issue.1, pp.59-69, 2006.
DOI : 10.1016/j.cell.2006.09.015

J. Kim, J. Moody, C. Edgerly, O. Bordiuk, K. Cormier et al., Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease, Human Molecular Genetics, vol.54, issue.1, pp.3919-3935, 2010.
DOI : 10.1016/j.mce.2003.10.059

U. Shirendeb, M. Calkins, M. Manczak, V. Anekonda, B. Dufour et al., Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease, Human Molecular Genetics, vol.378, issue.6555, pp.406-420, 2012.
DOI : 10.1038/378403a0

W. Song, J. Chen, A. Petrilli, G. Liot, E. Klinglmayr et al., Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity, Nature Medicine, vol.404, issue.3, pp.377-382, 2011.
DOI : 10.1016/S0076-6879(05)04053-X

URL : http://europepmc.org/articles/pmc3051025?pdf=render

N. Matsuda, S. Sato, K. Shiba, K. Okatsu, K. Saisho et al., PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy, The Journal of Cell Biology, vol.19, issue.2, pp.211-221, 2010.
DOI : 10.1073/pnas.0802814105

URL : http://jcb.rupress.org/content/jcb/189/2/211.full.pdf

D. Narendra, S. Jin, A. Tanaka, D. Suen, C. Gautier et al., PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin, PLoS Biology, vol.126, issue.1, p.1000298, 2010.
DOI : 10.1371/journal.pbio.1000298.s013

URL : https://doi.org/10.1371/journal.pbio.1000298

C. Vives-bauza, C. Zhou, Y. Huang, M. Cui, R. De-vries et al., PINK1-dependent recruitment of Parkin to mitochondria in mitophagy, Proceedings of the National Academy of Sciences, vol.10, issue.5, pp.378-383, 2010.
DOI : 10.1038/nn1876

W. Ding, F. Guo, H. Ni, A. Bockus, S. Manley et al., Parkin and Mitofusins Reciprocally Regulate Mitophagy and Mitochondrial Spheroid Formation, Journal of Biological Chemistry, vol.1802, issue.50, pp.42379-42388, 2012.
DOI : 10.1016/j.bbadis.2009.08.013

URL : http://www.jbc.org/content/287/50/42379.full.pdf

W. Ding, M. Li, J. Biazik, D. Morgan, F. Guo et al., Electron Microscopic Analysis of a Spherical Mitochondrial Structure, Journal of Biological Chemistry, vol.2, issue.50, pp.42373-42378, 2012.
DOI : 10.1074/jbc.M112.413682

J. Liévens, M. Iche, M. Laval, C. Faivre-sarrailh, and S. Birman, AKT-sensitive or insensitive pathways of toxicity in glial cells and neurons in Drosophila models of Huntington's disease, Human Molecular Genetics, vol.17, issue.6, pp.882-894, 2008.
DOI : 10.1093/hmg/ddm360

J. Park, S. Lee, S. Lee, Y. Kim, S. Song et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, vol.25, issue.7097, pp.1157-1161, 2006.
DOI : 10.1016/S0891-5849(98)00153-1

J. Park, G. Lee, and J. Chung, The PINK1???Parkin pathway is involved in the regulation of mitochondrial remodeling process, Biochemical and Biophysical Research Communications, vol.378, issue.3, pp.518-523, 2009.
DOI : 10.1016/j.bbrc.2008.11.086

D. Narendra and R. Youle, Targeting Mitochondrial Dysfunction: Role for PINK1 and Parkin in Mitochondrial Quality Control, Antioxidants & Redox Signaling, vol.14, issue.10, pp.1929-1938, 2011.
DOI : 10.1089/ars.2010.3799

S. Geisler, K. Holmstrom, D. Skujat, F. Fiesel, O. Rothfuss et al., PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, Nature Cell Biology, vol.278, issue.2, pp.119-131, 2010.
DOI : 10.1038/ncb2012

Y. Sun, A. Vashisht, J. Tchieu, J. Wohlschlegel, and L. Dreier, Voltage-dependent Anion Channels (VDACs) Recruit Parkin to Defective Mitochondria to Promote Mitochondrial Autophagy, Journal of Biological Chemistry, vol.12, issue.48, pp.40652-40660, 2012.
DOI : 10.1098/rsob.120080

URL : http://www.jbc.org/content/287/48/40652.full.pdf

J. Pridgeon, J. Olzmann, L. Chin, and L. Li, PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1, PLoS Biology, vol.22, issue.7, p.172, 2007.
DOI : 10.1371/journal.pbio.0050172.sg003

URL : https://doi.org/10.1371/journal.pbio.0050172

A. Costa, S. Loh, and L. Martins, Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson???s disease, Cell Death & Disease, vol.118, issue.1, p.467, 2013.
DOI : 10.1006/meth.2001.1262

F. Trettel, D. Rigamonti, P. Hilditch-maguire, V. Wheeler, A. Sharp et al., Dominant phenotypes produced by the HD mutation in STHdhQ111 striatal cells, Human Molecular Genetics, vol.9, issue.19, pp.2799-2809, 2000.
DOI : 10.1093/hmg/9.19.2799

D. Narendra, L. Kane, D. Hauser, I. Fearnley, and R. Youle, p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both, Autophagy, vol.15, issue.8, pp.1090-1106, 2010.
DOI : 10.1038/75406

URL : http://www.tandfonline.com/doi/pdf/10.4161/auto.6.8.13426?needAccess=true

H. Wang, P. Lim, M. Karbowski, and M. Monteiro, Effects of overexpression of Huntingtin proteins on mitochondrial integrity, Human Molecular Genetics, vol.263, issue.4, pp.737-752, 2009.
DOI : 10.1016/S0378-1119(00)00579-5

V. Costa, M. Giacomello, R. Hudec, R. Lopreiato, G. Ermak et al., Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli, EMBO Molecular Medicine, vol.279, issue.12, pp.490-503, 2010.
DOI : 10.1074/jbc.M404105200

X. Guo, M. Disatnik, M. Monbureau, M. Shamloo, D. Mochly-rosen et al., Inhibition of mitochondrial fragmentation diminishes Huntington???s disease???associated neurodegeneration, Journal of Clinical Investigation, vol.123, issue.12, pp.5371-5388, 2013.
DOI : 10.1172/JCI70911DS1

X. Yin and W. Ding, The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation, Autophagy, vol.9, issue.11, pp.1687-1692, 2013.
DOI : 10.1038/nrd1750

M. Shibata, T. Lu, T. Furuya, A. Degterev, N. Mizushima et al., Regulation of Intracellular Accumulation of Mutant Huntingtin by Beclin 1, Journal of Biological Chemistry, vol.56, issue.20, pp.14474-14485, 2006.
DOI : 10.1093/gerona/56.9.B375

M. Martinez-vicente, Z. Talloczy, E. Wong, G. Tang, H. Koga et al., Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease, Nature Neuroscience, vol.182, issue.5, pp.567-576, 2010.
DOI : 10.4161/auto.5338

Y. Wong and E. Holzbaur, The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin

M. Haque, K. Thomas, D. Souza, C. Callaghan, S. Kitada et al., Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP, Proceedings of the National Academy of Sciences, vol.16, issue.17, pp.1716-1721, 2008.
DOI : 10.1523/JNEUROSCI.0155-04.2004

URL : http://www.pnas.org/content/105/5/1716.full.pdf

A. Petit, T. Kawarai, E. Paitel, N. Sanjo, M. Maj et al., Wild-type PINK1 Prevents Basal and Induced Neuronal Apoptosis, a Protective Effect Abrogated by Parkinson Disease-related Mutations, Journal of Biological Chemistry, vol.280, issue.40, pp.34025-34032, 2005.
DOI : 10.1016/j.ccr.2005.02.010

URL : http://www.jbc.org/content/280/40/34025.full.pdf

A. Todd and B. Staveley, model of Parkinson???s disease, Genome, vol.14, issue.1, pp.1040-1046, 2008.
DOI : 10.1073/pnas.0602493103

M. Iguchi, Y. Kujuro, K. Okatsu, F. Koyano, H. Kosako et al., Parkin-catalyzed Ubiquitin-Ester Transfer Is Triggered by PINK1-dependent Phosphorylation, Journal of Biological Chemistry, vol.4, issue.30, pp.22019-22032, 2013.
DOI : 10.1038/cr.2013.66

URL : http://www.jbc.org/content/288/30/22019.full.pdf

C. Kondapalli, A. Kazlauskaite, N. Zhang, H. Woodroof, D. Campbell et al., PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65, Open Biology, vol.5, issue.2, p.120080, 2012.
DOI : 10.1074/mcp.M500210-MCP200

URL : http://rsob.royalsocietypublishing.org/content/royopenbio/2/5/120080.full.pdf

K. Shiba-fukushima, Y. Imai, S. Yoshida, Y. Ishihama, T. Kanao et al., PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin, Sci Rep J Cell Biol, vol.2, issue.191, pp.1367-1380, 2010.

N. Chan, A. Salazar, A. Pham, M. Sweredoski, N. Kolawa et al., Broad activation of the ubiquitin???proteasome system by Parkin is critical for mitophagy, Human Molecular Genetics, vol.160, issue.9, pp.1726-1737, 2011.
DOI : 10.1083/jcb.200211046

Y. Chen, G. Dorn, and . Ii, PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria, Science, vol.7, issue.9, pp.471-475, 2013.
DOI : 10.1371/journal.pone.0044296

URL : http://europepmc.org/articles/pmc3774525?pdf=render