N. P. Franks, Molecular targets underlying general anaesthesia, British Journal of Pharmacology, vol.100, issue.S1, pp.72-81, 2006.
DOI : 10.1111/j.1476-5381.1996.tb16042.x

URL : http://onlinelibrary.wiley.com/doi/10.1038/sj.bjp.0706441/pdf

N. P. Franks and W. Lieb, Do general anaesthetics act by competitive binding to specific receptors?, Nature, vol.104, issue.5978, pp.599-601, 1984.
DOI : 10.1353/pbm.1982.0051

E. N. Brown, R. Lydic, and N. Schiff, General Anesthesia, Sleep, and Coma, New England Journal of Medicine, vol.363, issue.27, pp.2638-2650, 2010.
DOI : 10.1056/NEJMra0808281

URL : http://dspace.mit.edu/bitstream/1721.1/69634/1/Brown-General%20anesthesia%2c%20sleep%20and%20coma.pdf

P. L. Purdon, A. Sampson, K. J. Pavone, and E. N. Brown, Clinical Electroencephalography for Anesthesiologists, Anesthesiology, vol.123, issue.4, pp.937-960, 2015.
DOI : 10.1097/ALN.0000000000000841

URL : http://europepmc.org/articles/pmc4573341?pdf=render

P. L. Purdon, Electroencephalogram signatures of loss and recovery of consciousness from propofol, Proc. Natl. Acad. Sci. USA, pp.1142-1151, 2013.
DOI : 10.1016/j.jneumeth.2003.10.009

V. A. Feshchenko, R. A. Veselis, and R. A. Reinsel, Propofol-Induced Alpha Rhythm, Neuropsychobiology, vol.50, issue.3, pp.257-266, 2004.
DOI : 10.1159/000079981

A. Cimenser, Tracking brain states under general anesthesia by using global coherence analysis, Proc. Natl. Acad. Sci. USA, pp.8832-8837, 2011.
DOI : 10.1016/j.jneumeth.2010.06.020

URL : http://www.pnas.org/content/108/21/8832.full.pdf

L. D. Gugino, Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane, British Journal of Anaesthesia, vol.87, issue.3, pp.421-428, 2001.
DOI : 10.1093/bja/87.3.421

A. Rémond, Handbook of Electroencephalography and Clinical Neurophysiology: Eat and Sleep, 1975.

M. Murphy, Propofol Anesthesia and Sleep: A High-Density EEG Study, Sleep, vol.3, issue.3, pp.283-291, 2011.
DOI : 10.1016/j.concog.2008.10.005

URL : https://academic.oup.com/sleep/article-pdf/34/3/283/13688045/sleep-34-3-283.pdf

M. T. Alkire, A. G. Hudetz, and G. Tononi, Consciousness and Anesthesia, Science, vol.100, issue.14, pp.876-880, 2008.
DOI : 10.1073/pnas.1332574100

M. T. Alkire, R. J. Haier, and J. H. Fallon, Toward a Unified Theory of Narcosis: Brain Imaging Evidence for a Thalamocortical Switch as the Neurophysiologic Basis of Anesthetic-Induced Unconsciousness, Consciousness and Cognition, vol.9, issue.3, pp.370-386, 2000.
DOI : 10.1006/ccog.1999.0423

G. A. Mashour and M. T. Alkire, Consciousness, Anesthesia, and the Thalamocortical System, Anesthesiology, vol.118, issue.1, pp.13-15, 2013.
DOI : 10.1097/ALN.0b013e318277a9c6

URL : http://anesthesiology.pubs.asahq.org/data/journals/jasa/931126/0000542-201301000-00009.pdf

J. Schrouff, Brain functional integration decreases during propofol-induced loss of consciousness, NeuroImage, vol.57, issue.1, pp.198-205, 2011.
DOI : 10.1016/j.neuroimage.2011.04.020

A. Trebuchon, Int??r??t du monitoring ??lectrophysiologique au cours d???une chirurgie ??veill??e en neurochirurgie, Annales Fran??aises d'Anesth??sie et de R??animation, vol.31, issue.6, pp.87-90, 2012.
DOI : 10.1016/j.annfar.2012.04.010

S. Boussen, In Vivo Tumour Maping Using Electrocorticography Alterations During Awake Brain Surgery: A Pilot Study, Brain Topogr, pp.10548-10564, 2016.

J. M. Zempel, Characterization of Scale-Free Properties of Human Electrocorticography in Awake and Slow Wave Sleep States, Frontiers in Neurology, vol.3, 2012.
DOI : 10.3389/fneur.2012.00076

K. J. Miller, L. B. Sorensen, J. G. Ojemann, and M. Den-nijs, Power-Law Scaling in the Brain Surface Electric Potential, PLoS Computational Biology, vol.162, issue.12, p.1000609, 2009.
DOI : 10.1371/journal.pcbi.1000609.s001

R. Loudon, The quantum theory of light, 2000.

J. S. Isaacson and M. Scanziani, How Inhibition Shapes Cortical Activity, Neuron, vol.72, issue.2, pp.231-243, 2011.
DOI : 10.1016/j.neuron.2011.09.027

URL : https://doi.org/10.1016/j.neuron.2011.09.027

A. Spiegler, T. R. Knösche, K. Schwab, J. Haueisen, and F. M. Atay, Modeling Brain Resonance Phenomena Using a Neural Mass Model, PLoS Computational Biology, vol.59, issue.12, p.1002298, 2011.
DOI : 10.1371/journal.pcbi.1002298.s003

URL : https://doi.org/10.1371/journal.pcbi.1002298

M. J. Higley and D. Contreras, Balanced Excitation and Inhibition Determine Spike Timing during Frequency Adaptation, Journal of Neuroscience, vol.26, issue.2, pp.448-457, 2006.
DOI : 10.1523/JNEUROSCI.3506-05.2006

URL : http://www.jneurosci.org/content/jneuro/26/2/448.full.pdf

J. E. Heiss, Y. Katz, E. Ganmor, and I. Lampl, Shift in the Balance between Excitation and Inhibition during Sensory Adaptation of S1 Neurons, Journal of Neuroscience, vol.28, issue.49, pp.13320-13330, 2008.
DOI : 10.1523/JNEUROSCI.2646-08.2008

A. International, . In, and . Physics, ) ii https, 1966.

S. Ching, A. Cimenser, P. L. Purdon, E. N. Brown, and N. J. Kopell, Thalamocortical model for a propofol-induced ??-rhythm associated with loss of consciousness, Proc. Natl. Acad. Sci, pp.22665-22670, 2010.
DOI : 10.1523/JNEUROSCI.2969-10.2010

Z. Liang, EEG entropy measures in anesthesia, Frontiers in Computational Neuroscience, vol.387, 2015.
DOI : 10.1016/j.physa.2008.07.004

URL : http://journal.frontiersin.org/article/10.3389/fncom.2015.00016/pdf

W. Klimesch, P. Sauseng, and S. Hanslmayr, EEG alpha oscillations: The inhibition???timing hypothesis, Brain Research Reviews, vol.53, issue.1, pp.63-88, 2007.
DOI : 10.1016/j.brainresrev.2006.06.003

S. R. Benbadis, Introduction to Sleep Electroencephalography, pp.989-1024, 2005.
DOI : 10.1002/0471751723.ch130

S. R. Jones, Cued Spatial Attention Drives Functionally Relevant Modulation of the Mu Rhythm in Primary Somatosensory Cortex, Journal of Neuroscience, vol.30, issue.41, pp.13760-13765, 2010.
DOI : 10.1523/JNEUROSCI.2969-10.2010

M. S. Worden, J. J. Foxe, N. Wang, and G. Simpson, Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific ??-Bank Electroencephalography Increases over Occipital Cortex, The Journal of Neuroscience, vol.20, issue.6, p.63, 2000.
DOI : 10.1523/JNEUROSCI.20-06-j0002.2000

S. M. Doesburg, J. J. Green, J. J. Mcdonald, and L. M. Ward, From local inhibition to long-range integration: A functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention, Brain Research, vol.1303, pp.97-110, 2009.
DOI : 10.1016/j.brainres.2009.09.069

L. J. Velly, Differential Dynamic of Action on Cortical and Subcortical Structures of Anesthetic Agents during Induction of Anesthesia, Anesthesiology, vol.107, issue.2, pp.202-212, 2007.
DOI : 10.1097/01.anes.0000270734.99298.b4

R. D. Sanders, G. Tononi, S. Laureys, J. W. Sleigh, ?. Unresponsiveness et al., Unresponsiveness ??? Unconsciousness, Anesthesiology, vol.116, issue.4, pp.946-959, 2012.
DOI : 10.1097/ALN.0b013e318249d0a7

URL : http://anesthesiology.pubs.asahq.org/data/journals/jasa/931107/00000542-201204000-00034.pdf

C. Koch, M. Massimini, M. Boly, and G. Tononi, Neural correlates of consciousness: progress and problems, Nature Reviews Neuroscience, vol.16, issue.5, pp.307-321, 2016.
DOI : 10.1093/cercor/bhu091

P. Guldenmund, Propofol-Induced Frontal Cortex Disconnection: A Study of Resting-State Networks, Total Brain Connectivity, and Mean BOLD Signal Oscillation Frequencies, Brain Connectivity, vol.6, issue.3, p.369, 2015.
DOI : 10.1089/brain.2015.0369

S. Ku, U. Lee, G. Noh, I. Jun, and G. A. Mashour, Preferential Inhibition of Frontal-to-Parietal Feedback Connectivity Is a Neurophysiologic Correlate of General Anesthesia in Surgical Patients, PLoS ONE, vol.142, issue.10, 2011.
DOI : 10.1371/journal.pone.0025155.t002

H. Lee, G. A. Mashour, G. Noh, S. Kim, and U. Lee, Reconfiguration of Network Hub Structure after Propofol-induced Unconsciousness, Anesthesiology, vol.119, issue.6, pp.1347-1359, 2013.
DOI : 10.1097/ALN.0b013e3182a8ec8c

S. Dehaene and J. Changeux, Experimental and Theoretical Approaches to Conscious Processing, Neuron, vol.70, issue.2, pp.200-227, 2011.
DOI : 10.1016/j.neuron.2011.03.018

URL : https://hal.archives-ouvertes.fr/hal-00717254

K. Hirota, Special cases: Ketamine, nitrous oxide and xenon, Best Practice & Research Clinical Anaesthesiology, vol.20, issue.1, pp.69-79, 2006.
DOI : 10.1016/j.bpa.2005.08.014

K. J. Pavone, Nitrous oxide-induced slow and delta oscillations, Clinical Neurophysiology, vol.127, issue.1, pp.556-564, 2016.
DOI : 10.1016/j.clinph.2015.06.001

URL : https://doi.org/10.1016/j.clinph.2015.06.001

S. Borchers, M. Himmelbach, N. Logothetis, and H. Karnath, Direct electrical stimulation of human cortex ??? the gold standard for mapping brain functions?, Nature Reviews Neuroscience, vol.24, issue.1, p.3140, 2011.
DOI : 10.1097/WNP.0b013e31803bb59a

R. Trebino, Frequency-resolved optical gating: the measurement of ultrashort laser pulses, 2000.
DOI : 10.1007/978-1-4615-1181-6

J. M. Diels, J. J. Fontaine, I. C. Mcmichael, and F. Simoni, Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy, Applied Optics, vol.24, issue.9, pp.1270-1282, 1985.
DOI : 10.1364/AO.24.001270

H. Liu, Y. Ogawa, and S. Oshiba, Generation of an extremely short single mode pulse (???2 ps) by fiber compression of a gain???switched pulse from a 1.3 ??m distributed???feedback laser diode, Applied Physics Letters, vol.27, issue.11, pp.1284-1286, 1991.
DOI : 10.1063/1.102022

B. H. Jansen and V. G. Rit, Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns, Biological Cybernetics, vol.580, issue.4, pp.357-366, 1995.
DOI : 10.1007/978-1-4684-8721-3

V. K. Jirsa and H. Haken, Field Theory of Electromagnetic Brain Activity, Physical Review Letters, vol.89, issue.5, pp.960-963, 1996.
DOI : 10.1016/0025-5564(74)90020-0

P. A. Robinson, C. J. Rennie, and D. L. Rowe, Dynamics of large-scale brain activity in normal arousal states and epileptic seizures, Physical Review E, vol.15, issue.4, 2002.
DOI : 10.1002/hbm.10011

A. Spiegler, S. J. Kiebel, F. M. Atay, and T. Knösche, Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants, NeuroImage, vol.52, issue.3, pp.1041-1058, 2010.
DOI : 10.1016/j.neuroimage.2009.12.081