C. Jean-xavier, J. Pflieger, S. Liabeuf, and L. Vinay, Inhibitory Postsynaptic Potentials in Lumbar Motoneurons Remain Depolarizing After Neonatal Spinal Cord Transection in the Rat, Journal of Neurophysiology, vol.96, issue.5, pp.2274-81, 2006.
DOI : 10.1152/jn.00616.2004

M. Bouhadfane, S. Tazerart, and A. Moqrich, Sodium-Mediated Plateau Potentials in Lumbar Motoneurons of Neonatal Rats, Journal of Neuroscience, vol.33, issue.39, pp.15626-15667, 2013.
DOI : 10.1523/JNEUROSCI.1483-13.2013

F. Brocard, N. Shevtsova, and M. Bouhadfane, Activity-Dependent Changes in Extracellular Ca2+ and K+ Reveal Pacemakers in the Spinal Locomotor-Related Network, Neuron, vol.77, issue.6, pp.1047-54, 2013.
DOI : 10.1016/j.neuron.2013.01.026

F. Brocard, S. Tazerart, and L. Vinay, Do Pacemakers Drive the Central Pattern Generator for Locomotion in Mammals?, The Neuroscientist, vol.23, issue.2, pp.139-55, 2010.
DOI : 10.1152/jn.90437.2008

S. Tazerart, L. Vinay, and F. Brocard, The Persistent Sodium Current Generates Pacemaker Activities in the Central Pattern Generator for Locomotion and Regulates the Locomotor Rhythm, Journal of Neuroscience, vol.28, issue.34, pp.8577-89, 2008.
DOI : 10.1523/JNEUROSCI.1437-08.2008

S. Tazerart, J. Viemari, and P. Darbon, Contribution of Persistent Sodium Current to Locomotor Pattern Generation in Neonatal Rats, Journal of Neurophysiology, vol.98, issue.2, pp.613-641, 2007.
DOI : 10.1016/S0306-4522(97)00604-0

URL : https://hal.archives-ouvertes.fr/hal-00168783

C. Brocard, V. Plantier, and P. Boulenguez, Cleavage of Na+ channels by calpain increases persistent Na+ current and promotes spasticity after spinal cord injury, Nature Medicine, vol.161, issue.4, pp.404-415, 2016.
DOI : 10.1089/neu.2012.2622

URL : https://hal.archives-ouvertes.fr/hal-01463798

M. Gorassini, M. Knash, and P. Harvey, Role of motoneurons in the generation of muscle spasms after spinal cord injury, Brain, vol.127, issue.10, pp.2247-58, 2004.
DOI : 10.1093/brain/awh243

G. Guroff, A neutral, calcium-activated proteinase from the soluble fraction of rat brain, J Biol Chem, vol.239, pp.149-55, 1964.

D. Goll, V. Thompson, and H. Li, The Calpain System, Physiological Reviews, vol.83, issue.3, pp.731-801, 2003.
DOI : 10.1016/0167-4838(91)99009-H

S. Shumway, M. Maki, and S. Miyamoto, Degradation by ??-Calpain, Journal of Biological Chemistry, vol.15, issue.43, pp.30874-81, 1999.
DOI : 10.1128/MCB.16.4.1401

M. Baudry and X. Bi, Calpain-1 and Calpain-2: The Yin and Yang of Synaptic Plasticity and Neurodegeneration, Trends in Neurosciences, vol.39, issue.4, pp.235-280, 2016.
DOI : 10.1016/j.tins.2016.01.007

N. Banik, D. Matzelle, and G. Gantt-wilford, Increased calpain content and progressive degradation of neurofilament protein in spinal cord injury, Brain Research, vol.752, issue.1-2, pp.301-307, 1997.
DOI : 10.1016/S0006-8993(96)01488-6

S. Du, A. Rubin, and S. Klepper, Calcium Influx and Activation of Calpain I Mediate Acute Reactive Gliosis in Injured Spinal Cord, Experimental Neurology, vol.157, issue.1, pp.96-105, 1999.
DOI : 10.1006/exnr.1999.7041

S. Arataki, K. Tomizawa, and A. Moriwaki, Calpain Inhibitors Prevent Neuronal Cell Death and Ameliorate Motor Disturbances after Compression-Induced Spinal Cord Injury in Rats, Journal of Neurotrauma, vol.22, issue.3, pp.398-406, 2005.
DOI : 10.1089/neu.2005.22.398

A. Iwata, P. Stys, and J. Wolf, Traumatic Axonal Injury Induces Proteolytic Cleavage of the Voltage-Gated Sodium Channels Modulated by Tetrodotoxin and Protease Inhibitors, Journal of Neuroscience, vol.24, issue.19, pp.4605-4618, 2004.
DOI : 10.1523/JNEUROSCI.0515-03.2004

C. Armstrong, F. Bezanilla, and E. Rojas, Destruction of Sodium Conductance Inactivation in Squid Axons Perfused with Pronase, The Journal of General Physiology, vol.62, issue.4, pp.375-91, 1973.
DOI : 10.1085/jgp.62.4.375

M. Puskarjov, F. Ahmad, K. Kaila, and P. Blaesse, Activity-Dependent Cleavage of the K-Cl Cotransporter KCC2 Mediated by Calcium-Activated Protease Calpain, Journal of Neuroscience, vol.32, issue.33, pp.11356-64, 2012.
DOI : 10.1523/JNEUROSCI.6265-11.2012

H. Zhou, S. Chen, and H. Byun, Cotransporter-2 Impairs Spinal Chloride Homeostasis in Neuropathic Pain, Journal of Biological Chemistry, vol.280, issue.40, pp.33853-64, 2012.
DOI : 10.1016/j.pain.2009.06.023

A. Mercado, V. Broumand, and K. Zandi-nejad, Cotransport, Journal of Biological Chemistry, vol.88, issue.2, pp.1016-1042, 2006.
DOI : 10.1172/JCI200316808

F. Biering-sorensen, J. Nielsen, and K. Klinge, Spasticity-assessment: a review, Spinal Cord, vol.389, issue.Suppl, pp.708-730, 2006.
DOI : 10.1113/jphysiol.1987.sp016652

D. Sommerfeld, E. Eek, and A. Svensson, Spasticity After Stroke: Its Occurrence and Association With Motor Impairments and Activity Limitations, Stroke, vol.35, issue.1, pp.134-143, 2004.
DOI : 10.1161/01.STR.0000105386.05173.5E

M. Kiernan, S. Vucic, and B. Cheah, Amyotrophic lateral sclerosis, The Lancet, vol.377, issue.9769, pp.942-55, 2011.
DOI : 10.1016/S0140-6736(10)61156-7

URL : https://hal.archives-ouvertes.fr/hal-01785450

J. Lance, The control of muscle tone, reflexes, and movement: Robert Wartenbeg Lecture, Neurology, vol.30, issue.12, pp.1303-1316, 1980.
DOI : 10.1212/WNL.30.12.1303

A. Mukherjee and A. Chakravarty, Spasticity Mechanisms ??? for the Clinician, Frontiers in Neurology, vol.1, p.149, 2010.
DOI : 10.3389/fneur.2010.00149

D. Bennett, M. Gorassini, and K. Fouad, Spasticity in Rats With Sacral Spinal Cord Injury, Journal of Neurotrauma, vol.16, issue.1, pp.69-84, 1999.
DOI : 10.1089/neu.1999.16.69

C. Bellardita, V. Caggiano, and R. Leiras, Author response, eLife, vol.32, issue.4, p.6, 2017.
DOI : 10.7554/eLife.23011.039

P. Gillard, H. Sucharew, and . Kleindorfer, The negative impact of spasticity on the health-related quality of life of stroke survivors: a longitudinal cohort study, Health and Quality of Life Outcomes, vol.11, issue.1, p.159, 2015.
DOI : 10.1186/1477-7525-11-59

S. Elbasiouny, D. Moroz, M. Bakr, and V. Mushahwar, Management of Spasticity After Spinal Cord Injury: Current Techniques and Future Directions, Neurorehabilitation and Neural Repair, vol.14, issue.1, pp.23-33, 2010.
DOI : 10.1152/japplphysiol.00362.2007

J. Eccles, P. Kostyuk, and R. Schmidt, Presynaptic inhibition of the central actions of flexor reflex afferents, The Journal of Physiology, vol.161, issue.2, pp.258-81, 1962.
DOI : 10.1113/jphysiol.1962.sp006885

H. Hultborn, E. Jankowska, S. Lindstrom, and W. Roberts, Neuronal pathway of the recurrent facilitation of motoneurones, The Journal of Physiology, vol.218, issue.2, pp.495-514, 1971.
DOI : 10.1113/jphysiol.1971.sp009630

C. Crone, J. Nielsen, and N. Petersen, Disynaptic reciprocal inhibition of ankle extensors in spastic patients, Brain, vol.117, issue.5, pp.1161-68, 1994.
DOI : 10.1093/brain/117.5.1161

A. Lundberg and P. Voorhoeve, Effects from the Pyramidal Tract on Spinal Reflex Arcs, Acta Physiologica Scandinavica, vol.142, issue.Suppl. 186, pp.201-220, 1962.
DOI : 10.1113/jphysiol.1958.sp005997

J. Nielsen, N. Petersen, and M. Ballegaard, H-reflexes are less depressed following muscle stretch in spastic spinal cord injured patients than in healthy subjects, Experimental Brain Research, vol.97, issue.1, pp.173-76, 1993.
DOI : 10.1007/BF00228827

F. Thompson, P. Reier, C. Lucas, and R. Parmer, Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord, Journal of Neurophysiology, vol.68, issue.5, pp.1473-86, 1992.
DOI : 10.1152/jn.1992.68.5.1473

C. Crone, L. Johnsen, F. Biering-sorensen, and J. Nielsen, Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury, Brain, vol.126, issue.2, pp.495-507, 2003.
DOI : 10.1093/brain/awg036

C. Jean-xavier, G. Mentis, O. Donovan, and M. , Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord, Proceedings of the National Academy of Sciences, vol.15, issue.2, pp.11477-82, 2007.
DOI : 10.1046/j.0953-816x.2001.01854.x

URL : https://hal.archives-ouvertes.fr/hal-00330657

P. Boulenguez, S. Liabeuf, and R. Bos, Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury, Nature Medicine, vol.26, issue.3, pp.302-309, 2010.
DOI : 10.1523/JNEUROSCI.3257-06.2006

P. Boulenguez, S. Liabeuf, and L. Vinay, Perte d???inhibition neuronale et spasticit?? apr??s traumatisme de la moelle ??pini??re, m??decine/sciences, vol.26, issue.1, pp.7-9, 2011.
DOI : 10.1051/medsci/201026121015

URL : http://www.medecinesciences.org/articles/medsci/pdf/2011/01/medsci2011271p7.pdf

R. Bos, K. Sadlaoud, and P. Boulenguez, Activation of 5-HT2A receptors upregulates the function of the neuronal K-Cl cotransporter KCC2, Proceedings of the National Academy of Sciences, vol.26, issue.41, pp.348-53, 2013.
DOI : 10.1523/JNEUROSCI.3257-06.2006