M. Bandell, G. Story, S. Hwang, V. Viswanath, S. Eid et al., Noxious Cold Ion Channel TRPA1 Is Activated by Pungent Compounds and Bradykinin, Neuron, vol.41, issue.6, pp.849-857, 2004.
DOI : 10.1016/S0896-6273(04)00150-3

URL : https://doi.org/10.1016/s0896-6273(04)00150-3

M. Barrot, Tests and models of nociception and pain in rodents, Neuroscience, vol.211, 2012.
DOI : 10.1016/j.neuroscience.2011.12.041

D. Bennett, L. Sanelli, C. Cooke, P. Harvey, and M. Gorassini, Spastic Long-Lasting Reflexes in the Awake Rat After Sacral Spinal Cord Injury, Journal of Neurophysiology, vol.91, issue.5, pp.2247-2258, 2003.
DOI : 10.1113/jphysiol.1970.sp009304

J. Bleasdale, N. Thakur, R. Gremban, G. Bundy, F. Fitzpatrick et al., Selective inhibition of receptor-coupled phospholipase C-dependent processes in human platelets and polymorphonuclear neutrophils, The Journal of Pharmacology and Experimental Therapeutics, vol.255, pp.756-768, 1990.

M. Bouhadfane, S. Tazerart, A. Moqrich, L. Vinay, and F. Brocard, Sodium-Mediated Plateau Potentials in Lumbar Motoneurons of Neonatal Rats, Journal of Neuroscience, vol.33, issue.39, pp.15626-15641, 2013.
DOI : 10.1523/JNEUROSCI.1483-13.2013

F. Brocard, N. Shevtsova, M. Bouhadfane, S. Tazerart, U. Heinemann et al., Activity-Dependent Changes in Extracellular Ca2+ and K+ Reveal Pacemakers in the Spinal Locomotor-Related Network, Neuron, vol.77, issue.6, pp.1047-1054, 2013.
DOI : 10.1016/j.neuron.2013.01.026

D. Brown and H. Higashida, Inositol 1,4,5-trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma x rat glioma hybrid cells., The Journal of Physiology, vol.397, issue.1, pp.185-207, 1988.
DOI : 10.1113/jphysiol.1988.sp016995

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1988.sp016995/pdf

G. Burgess, I. Mullaney, M. Mcneill, P. Dunn, and H. Rang, Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture, The Journal of Neuroscience, vol.9, issue.9, pp.3314-3325, 1989.
DOI : 10.1523/JNEUROSCI.09-09-03314.1989

G. Bynke, R. Håkanson, J. Horig, and S. Leander, Bradykinin contracts the pupillary sphincter and evokes ocular inflammation through release of neuronal substance P, European Journal of Pharmacology, vol.91, issue.4, pp.469-475, 1983.
DOI : 10.1016/0014-2999(83)90172-3

J. Calixto, D. Cabrini, J. Ferreira, and M. Campos, Kinins in pain and inflammation, Pain, vol.87, issue.1, pp.1-5, 2000.
DOI : 10.1016/S0304-3959(00)00335-3

G. Callejo, J. Giblin, and X. Gasull, Modulation of TRESK Background K+ Channel by Membrane Stretch, PLoS ONE, vol.30, issue.5, 2013.
DOI : 10.1371/journal.pone.0064471.g005

P. Cesare, L. Dekker, A. Sardini, P. Parker, and P. Mcnaughton, Specific Involvement of PKC-?? in Sensitization of the Neuronal Response to Painful Heat, Neuron, vol.23, issue.3, pp.617-624, 1999.
DOI : 10.1016/S0896-6273(00)80813-2

R. Chavez, A. Gray, B. Zhao, C. Kindler, M. Mazurek et al., TWIK-2, a New Weak Inward Rectifying Member of the Tandem Pore Domain Potassium Channel Family, Journal of Biological Chemistry, vol.268, issue.12, pp.7887-7892, 1999.
DOI : 10.1016/0959-4388(95)80038-7

C. Correa and J. Calixto, Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse, British Journal of Pharmacology, vol.388, issue.1, pp.193-198, 1993.
DOI : 10.1113/jphysiol.1987.sp016598

H. Cruzblanca, D. Koh, and B. Hille, Bradykinin inhibits M current via phospholipase C and Ca2+ release from IP3-sensitive Ca2+ stores in rat sympathetic neurons, Proceedings of the National Academy of Sciences of USA 95, pp.7151-7156, 1998.
DOI : 10.1073/pnas.84.12.4313

G. Dalmolin, C. Silva, N. Belí-e, M. Rubin, C. Mello et al., Bradykinin into amygdala induces thermal hyperalgesia in rats, Neuropeptides, vol.41, issue.4, 2007.
DOI : 10.1016/j.npep.2006.12.007

S. Davies, H. Reddy, M. Caivano, and P. Cohen, Specificity and mechanism of action of some commonly used protein kinase inhibitors, Biochemical Journal, vol.351, issue.1, pp.95-105, 2000.
DOI : 10.1042/bj3510095

P. Delmas, N. Wanaverbecq, F. Abogadie, M. Mistry, and D. Brown, Signaling Microdomains Define the Specificity of Receptor-Mediated InsP3 Pathways in Neurons, Neuron, vol.34, issue.2, pp.209-220, 2002.
DOI : 10.1016/S0896-6273(02)00641-4

C. Derian and M. Moskowitz, Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-independent, The Journal of Biological Chemistry, vol.261, pp.3831-3837, 1986.

T. Dobler, A. Springauf, S. Tovornik, M. Weber, A. Schmitt et al., channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones, The Journal of Physiology, vol.122, issue.3, pp.867-879, 2007.
DOI : 10.1016/j.neuroscience.2003.08.035

A. Dray, J. Bettaney, P. Forster, and M. Perkins, Activation of a bradykinin receptor in peripheral nerve and spinal cord in the neonatal rat in vitro, British Journal of Pharmacology, vol.85, issue.4, 1988.
DOI : 10.1073/pnas.85.9.3245

A. Dray, I. Patel, M. Perkins, and A. Rueff, Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro, British Journal of Pharmacology, vol.394, issue.4, pp.1129-1134, 1992.
DOI : 10.1016/B978-0-12-783402-3.50015-9

A. Dray and M. Perkins, Bradykinin and inflammatory pain, Trends in Neurosciences, vol.16, issue.3, pp.99-104, 1993.
DOI : 10.1016/0166-2236(93)90133-7

A. Dray and M. Perkins, Bradykinin activates peripheral capsaicin-sensitive fibres via a second messenger system, Agents and Actions, vol.135, issue.3-4, pp.214-215, 1988.
DOI : 10.1111/j.2042-7158.1980.tb12833.x

P. Dunn and H. Rang, Bradykinin-induced depolarization of primary afferent nerve terminals in the neonatal rat spinal cord in vitro, British Journal of Pharmacology, vol.181, issue.3, pp.656-660, 1990.
DOI : 10.1016/0014-5793(85)80301-X

F. Duprat, F. Lesage, M. Fink, R. Reyes, C. Heurteaux et al., TASK, a human background K+ channel to sense external pH variations near physiological pH, The EMBO Journal, vol.16, issue.17, pp.5464-5471, 1997.
DOI : 10.1093/emboj/16.17.5464

D. Eggerickx, E. Raspe, D. Bertrand, G. Vassart, and M. Parmentier, Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene, Biochemical and Biophysical Research Communications, vol.187, issue.3, pp.1306-1313, 1992.
DOI : 10.1016/0006-291X(92)90445-Q

P. Enyedi and G. Czirjákczirj´czirják, Currents: Two-Pore Domain Potassium Channels, Physiological Reviews, vol.22, issue.2, pp.559-605, 2009.
DOI : 10.1038/22761

D. Ewald, I. Pang, P. Sternweis, and R. Miller, Differential G protein???mediated coupling of neurotransmitter receptors to Ca2+ channels in rat dorsal root ganglion neurons in vitro, Neuron, vol.2, issue.2, pp.1185-1193, 1989.
DOI : 10.1016/0896-6273(89)90185-2

J. Ferreira, M. Campos, R. Araujo, M. Bader, J. Pesquero et al., The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level, Neuropharmacology, vol.43, issue.7, pp.1188-1197, 2002.
DOI : 10.1016/S0028-3908(02)00311-8

J. Ferreira, G. Da-silva, and J. Calixto, kinin receptor activation in mice, British Journal of Pharmacology, vol.400, issue.5, pp.787-794, 2004.
DOI : 10.1038/22761

M. Fitzgerald, The development of nociceptive circuits, Nature Reviews Neuroscience, vol.19, issue.Suppl., pp.507-520, 2005.
DOI : 10.1083/jcb.134.2.487

P. Francel and G. Dawson, Bradykinin induces a rapid release of inositol trisphosphate from a neuroblastoma hybrid cell line NCB-20 that is not antagonized by enkephalin, Biochemical and Biophysical Research Communications, vol.135, issue.2, pp.507-514, 1986.
DOI : 10.1016/0006-291X(86)90023-9

P. Francel, R. Miller, and G. Dawson, Modulation of Bradykinin-Induced Inositol Trisphosphate Release in a Novel Neuroblastoma X Dorsal Root Ganglion Sensory Neuron Cell Line (F-11), Journal of Neurochemistry, vol.259, issue.5, pp.1632-1639, 1987.
DOI : 10.1016/0014-5793(85)80301-X

J. Gafni, J. Munsch, T. Lam, M. Catlin, L. Costa et al., Xestospongins: Potent Membrane Permeable Blockers of the Inositol 1,4,5-Trisphosphate Receptor, Neuron, vol.19, issue.3, pp.723-733, 1997.
DOI : 10.1016/S0896-6273(00)80384-0

P. Geppetti, Sensory neuropeptide release by bradykinin: mechanisms and pathophysiological implications, Regulatory Peptides, vol.47, issue.1, pp.1-23, 1993.
DOI : 10.1016/0167-0115(93)90268-D

D. Glass, L. Lundquist, B. Katz, and D. Walsh, Protein kinase inhibitor-(6-22)-amide peptide analogs with standard and nonstandard amino acid substitutions for phenylalanine 10. Inhibition of cAMP-dependent protein kinase, The Journal of Biological Chemistry, vol.264, pp.14579-14584, 1989.

S. Gutowski, A. Smrcka, L. Nowak, D. Wu, M. Simon et al., Antibodies to the alpha q subfamily of guanine nucleotide-binding regulatory protein alpha subunits attenuate activation of phosphatidylinositol 4,5-bisphosphate hydrolysis by hormones, The Journal of Biological Chemistry, vol.266, pp.20519-20524, 1991.

J. Hall, Bradykinin receptors: Pharmacological properties and biological roles, Pharmacology & Therapeutics, vol.56, issue.2, pp.131-190, 1992.
DOI : 10.1016/0163-7258(92)90016-S

F. Heblich, S. England, and R. Docherty, Indirect actions of bradykinin on neonatal rat dorsal root ganglion neurones: a role for non-neuronal cells as nociceptors, The Journal of Physiology, vol.8, issue.1, pp.111-121, 2001.
DOI : 10.1113/jphysiol.1995.sp020618

J. Herbert, J. Augereau, J. Gleye, and J. Maffrand, Chelerythrine is a potent and specific inhibitor of protein kinase C, Biochemical and Biophysical Research Communications, vol.172, issue.3, pp.993-999, 1990.
DOI : 10.1016/0006-291X(90)91544-3

H. Hidaka, Y. Sasaki, T. Tanaka, T. Endo, S. Ohno et al., N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation., Proceedings of the National Academy of Sciences, vol.78, issue.7, pp.4354-4357, 1981.
DOI : 10.1073/pnas.78.7.4354

M. Ifuku, K. Farber, Y. Okuno, Y. Yamakawa, T. Miyamoto et al., Bradykinin-Induced Microglial Migration Mediated by B1-Bradykinin Receptors Depends on Ca2+ Influx via Reverse-Mode Activity of the Na+/Ca2+ Exchanger, Journal of Neuroscience, vol.27, issue.48, pp.13065-13073, 2007.
DOI : 10.1523/JNEUROSCI.3467-07.2007

T. Jackson, T. Hallam, C. Downes, and M. Hanley, Receptor coupled events in bradykinin action: rapid production of inositol phosphates and regulation of cytosolic free Ca2+ in a neural cell line, The EMBO Journal, vol.6, pp.49-54, 1987.

S. Jeftinija, Bradykinin excites tetrodotoxin-resistant primary afferent fibers, Brain Research, vol.665, issue.1, pp.69-76, 1994.
DOI : 10.1016/0006-8993(94)91153-3

S. Jones, D. Brown, G. Milligan, E. Willer, N. Buckley et al., Bradykinin excites rat sympathetic neurons by inhibition of M current through a mechanism involving B2 receptors and G??q/11, Neuron, vol.14, issue.2, pp.399-405, 1995.
DOI : 10.1016/0896-6273(95)90295-3

D. Kang and D. Kim, Single-channel properties and pH sensitivity of two-pore domain K+ channels of the TALK family, Biochemical and Biophysical Research Communications, vol.315, issue.4, pp.836-844, 2004.
DOI : 10.1016/j.bbrc.2004.01.137

G. Katona, G. Szalay, P. Maak, A. Kaszas, M. Veress et al., Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes, Nature Methods, vol.23, issue.2, pp.201-208, 2012.
DOI : 10.1364/OL.17.001295

V. Lamorte, A. Harootunian, A. Spiegel, R. Tsien, and J. Feramisco, Mediation of growth factor induced DNA synthesis and calcium mobilization by Gq and Gi2, The Journal of Cell Biology, vol.121, issue.1, pp.91-99, 1993.
DOI : 10.1083/jcb.121.1.91

F. Lesage, Pharmacology of neuronal background potassium channels, Neuropharmacology, vol.44, issue.1, pp.1-7, 2003.
DOI : 10.1016/S0028-3908(02)00339-8

F. Lesage and M. Lazdunski, Molecular and functional properties of two-pore-domain potassium channels, American Journal of Physiology-Renal Physiology, vol.13, issue.5, pp.793-801, 2000.
DOI : 10.1016/0014-5793(95)01035-D

F. Lesage, F. Maingret, and M. Lazdunski, channel, FEBS Letters, vol.484, issue.2-3, pp.137-140, 2000.
DOI : 10.1113/jphysiol.1995.sp020693

URL : https://hal.archives-ouvertes.fr/hal-01349091

D. Levy and D. Zochodne, Increased mRNA expression of the B1 and B2 bradykinin receptors and antinociceptive effects of their antagonists in an animal model of neuropathic pain, Pain, vol.86, issue.3, pp.265-271, 2000.
DOI : 10.1016/S0304-3959(00)00256-6

Y. Li, M. Gorassini, and D. Bennett, Role of Persistent Sodium and Calcium Currents in Motoneuron Firing and Spasticity in Chronic Spinal Rats, Journal of Neurophysiology, vol.91, issue.2, pp.767-783, 2003.
DOI : 10.1002/mus.1094

Z. Li, W. Tyor, J. Xu, J. Chao, and E. Hogan, Immunohistochemical Localization of Kininogen in Rat Spinal Cord and Brain, Experimental Neurology, vol.159, issue.2, pp.528-537, 1999.
DOI : 10.1006/exnr.1999.7165

C. Liebmann, A. Graness, A. Boehmer, M. Kovalenko, A. Adomeit et al., and Inhibition of Bradykinin-induced Activation of the Cyclic AMP Pathway in A431 Cells by Epidermal Growth Factor Receptor, Journal of Biological Chemistry, vol.267, issue.49, pp.31098-31105, 1996.
DOI : 10.1038/379557a0

B. Liu, J. Linley, X. Du, X. Zhang, L. Ooi et al., The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl??? channels, Journal of Clinical Investigation, vol.120, issue.4, pp.1240-1252, 1172.
DOI : 10.1172/JCI41084DS1

E. Lloyd, S. Marrelli, K. Namiranian, R. Bryan, and . Jr, Channel, Cloned from the Rat Middle Cerebral Artery, Experimental Biology and Medicine, vol.234, issue.12, pp.1493-1502, 2009.
DOI : 10.1016/S0169-328X(00)00263-1

P. Lopes and R. Couture, Localization of bradykinin-like immunoreactivity in the rat spinal cord: Effects of capsaicin, melittin, dorsal rhizotomy and peripheral axotomy, Neuroscience, vol.78, issue.2, pp.481-497, 1997.
DOI : 10.1016/S0306-4522(96)00554-4

P. Lopes, S. Kar, L. Chretien, D. Regoli, R. Quirion et al., Quantitative autoradiographic localization of [125I-TYR8]bradykinin receptor binding sites in the rat spinal cord: Effects of neonatal capsaicin, noradrenergic deafferentation, dorsal rhizotomy and peripheral axotomy, Neuroscience, vol.68, issue.3, pp.867-881, 1995.
DOI : 10.1016/0306-4522(95)00161-B

D. Lotshaw, Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels, Cell Biochemistry and Biophysics, vol.32, issue.4, pp.209-256, 2007.
DOI : 10.1113/jphysiol.1996.sp021224

D. Manning, S. Raja, R. Meyer, and J. Campbell, Pain and hyperalgesia after intradermal injection of bradykinin in humans, Clinical Pharmacology and Therapeutics, vol.50, issue.6, pp.721-729, 1991.
DOI : 10.1038/clpt.1991.212

F. Marceau, J. Hess, and D. Bachvarov, The B1 receptors for kinins, Pharmacological Reviews, vol.50, pp.357-386, 1998.

A. Mathie, E. Moubarak, and E. Veale, SYMPOSIUM REVIEW: Gating of two pore domain potassium channels, The Journal of Physiology, vol.32, issue.17, pp.3149-3156, 2010.
DOI : 10.1016/S0896-6273(01)00503-7

D. Mcgehee, M. Goy, and G. Oxford, Involvement of the nitric oxide-cyclic GMP pathway in the desensitization of bradykinin responses of cultured rat sensory neurons, Neuron, vol.9, issue.2, pp.315-324, 1992.
DOI : 10.1016/0896-6273(92)90170-I

S. Mcguirk and A. Dolphin, G-protein mediation in nociceptive signal transduction: An investigation into the excitatory action of bradykinin in a subpopulation of cultured rat sensory neurons, Neuroscience, vol.49, issue.1, pp.117-128, 1992.
DOI : 10.1016/0306-4522(92)90079-H

Z. Merali, C. Merchant, J. Crawley, D. Coy, P. Heinz-erian et al., (D-Phe12) bombesin and substance P analogues function as central bombesin receptor antagonists, Synapse, vol.5, issue.3, pp.282-287, 1988.
DOI : 10.1042/bj2310781

K. Murray, A. Nakae, M. Stephens, M. Rank, D. Amico et al., Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors, Nature Medicine, vol.32, issue.6, pp.694-700, 2010.
DOI : 10.1007/s00210-004-0951-4

P. Nickolls, D. Collins, R. Gorman, D. Burke, and S. Gandevia, Forces consistent with plateau-like behaviour of spinal neurons evoked in patients with spinal cord injuries, Brain, vol.127, issue.3, pp.660-670, 2004.
DOI : 10.1093/brain/awh073

M. Noda, Y. Kariura, T. Amano, Y. Manago, K. Nishikawa et al., Expression and function of bradykinin receptors in microglia, Life Sciences, vol.72, issue.14, pp.1573-1581, 2003.
DOI : 10.1016/S0024-3205(02)02449-9

V. Parpura, T. Basarsky, F. Liu, K. Jeftinija, S. Jeftinija et al., Glutamate-mediated astrocyte???neuron signalling, Nature, vol.369, issue.6483, pp.744-747, 1994.
DOI : 10.1038/369744a0

L. Partridge and D. Swandulla, Calcium-activated non-specific cation channels, Trends in Neurosciences, vol.11, issue.2, pp.69-72, 1988.
DOI : 10.1016/0166-2236(88)90167-1

A. Patel and E. Honore, Properties and modulation of mammalian 2P domain K+ channels, Trends in Neurosciences, vol.24, issue.6, pp.339-346, 2001.
DOI : 10.1016/S0166-2236(00)01810-5

A. Patel, F. Maingret, V. Magnone, M. Fosset, M. Lazdunski et al., Channel, Journal of Biological Chemistry, vol.15, issue.37, pp.28722-28730, 2000.
DOI : 10.1085/jgp.113.6.819

URL : https://hal.archives-ouvertes.fr/jpa-00253098

M. Perkins, E. Campbell, and A. Dray, Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, des-Arg9, [Leu8]-BK and HOE 140, in two models of persistent hyperalgesia in the rat, Pain, vol.53, issue.2, pp.191-197, 1993.
DOI : 10.1016/0304-3959(93)90080-9

T. Perney and R. Miller, Two different G-proteins mediate neuropeptide Y and bradykinin-stimulated phospholipid breakdown in cultured rat sensory neurons, The Journal of Biological Chemistry, vol.264, pp.7317-7327, 1989.

L. Premkumar and G. Ahern, Induction of vanilloid receptor channel activity by protein kinase C, Nature, vol.35, issue.6815, pp.985-990, 2000.
DOI : 10.1002/jnr.490350513

D. Raidoo and K. Bhoola, Pathophysiology of the Kallikrein-Kinin System in Mammalian Nervous Tissue, Pharmacology & Therapeutics, vol.79, issue.2, pp.105-127, 1998.
DOI : 10.1016/S0163-7258(98)00011-4

S. Rajan, E. Wischmeyer, C. Karschin, R. Preisig-muller, K. Grzeschik et al., Channels, Journal of Biological Chemistry, vol.277, issue.10, pp.7302-7311, 2001.
DOI : 10.1006/geno.1998.5397

A. Rueff and A. Dray, Sensitization of peripheral afferent fibres in the in vitro neonatal rat spinal cord-tail by bradykinin and prostaglandins, Neuroscience, vol.54, issue.2, pp.527-535, 1993.
DOI : 10.1016/0306-4522(93)90272-H

Y. Sano, K. Inamura, A. Miyake, S. Mochizuki, C. Kitada et al., Channel, TRESK, Is Localized in the Spinal Cord, Journal of Biological Chemistry, vol.82, issue.30, pp.27406-27412, 2003.
DOI : 10.1046/j.1471-4159.1999.0730684.x

G. Seabrook, B. Bowery, R. Heavens, N. Brown, H. Ford et al., Expression of B1 and B2 bradykinin receptor mRNA and their functional roles in sympathetic ganglia and sensory dorsal root ganglia neurones from wild-type and B2 receptor knockout mice, Neuropharmacology, vol.36, issue.7, pp.1009-1017, 1997.
DOI : 10.1016/S0028-3908(97)00065-8

L. Selbie and S. Hill, G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signalling pathways, Trends in Pharmacological Sciences, vol.19, issue.3, pp.87-93, 1998.
DOI : 10.1016/S0165-6147(97)01166-8

M. Smith, R. Colbran, and T. Soderling, Specificities of autoinhibitory domain peptides for four protein kinases. Implications for intact cell studies of protein kinase function, The Journal of Biological Chemistry, vol.265, pp.1837-1840, 1990.

L. Steranka, D. Manning, C. Dehaas, J. Ferkany, S. Borosky et al., Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions., Proceedings of the National Academy of Sciences, vol.85, issue.9, pp.3245-3249, 1988.
DOI : 10.1073/pnas.85.9.3245

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth, In vivo two-photon calcium imaging of neuronal networks, Proceedings of the National Academy of Sciences, vol.543, issue.1, pp.7319-7324, 2003.
DOI : 10.1113/jphysiol.2002.018465

T. Sugiura, M. Tominaga, H. Katsuya, and K. Mizumura, Bradykinin Lowers the Threshold Temperature for Heat Activation of Vanilloid Receptor 1, Journal of Neurophysiology, vol.27, issue.1, pp.544-548, 2002.
DOI : 10.1111/j.1469-7793.2001.00813.x

M. Sumi, K. Kiuchi, T. Ishikawa, A. Ishii, M. Hagiwara et al., The newly synthesized selective Ca2+calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells, Biochemical and Biophysical Research Communications, vol.181, issue.3, pp.968-975, 1991.
DOI : 10.1016/0006-291X(91)92031-E

E. Talley, Q. Lei, J. Sirois, and D. Bayliss, TASK-1, a Two???Pore Domain K+ Channel, Is Modulated by Multiple Neurotransmitters in Motoneurons, Neuron, vol.25, issue.2, pp.399-410, 2000.
DOI : 10.1016/S0896-6273(00)80903-4

S. Tazerart, J. Viemari, P. Darbon, L. Vinay, and F. Brocard, Contribution of Persistent Sodium Current to Locomotor Pattern Generation in Neonatal Rats, Journal of Neurophysiology, vol.98, issue.2, pp.613-628, 2007.
DOI : 10.1016/S0306-4522(97)00604-0

URL : https://hal.archives-ouvertes.fr/hal-00168783

S. Thayer, T. Perney, and R. Miller, Regulation of calcium homeostasis in sensory neurons by bradykinin, The Journal of Neuroscience, vol.8, issue.11, pp.4089-4097, 1988.
DOI : 10.1523/JNEUROSCI.08-11-04089.1988

A. Villarroel, M-Current suppression in PC 12 cells by bradykinin is mediated by a pertussis toxin-insensitive G-protein and modulated by intracellular calcium, Brain Research, vol.740, issue.1-2, pp.227-233, 1996.
DOI : 10.1016/S0006-8993(96)00870-0

K. Walker, M. Perkins, and A. Dray, Kinins and kinin receptors in the nervous system, Neurochemistry International, vol.26, issue.1, pp.1-16, 1995.
DOI : 10.1016/0197-0186(94)00114-A

H. Wang, T. Kohno, F. Amaya, G. Brenner, N. Ito et al., Bradykinin Produces Pain Hypersensitivity by Potentiating Spinal Cord Glutamatergic Synaptic Transmission, Journal of Neuroscience, vol.25, issue.35, pp.7986-7992, 2005.
DOI : 10.1523/JNEUROSCI.2393-05.2005

URL : http://www.jneurosci.org/content/jneuro/25/35/7986.full.pdf

D. Weinreich, Bradykinin inhibits a slow spike afterhyperpolarization in visceral sensory neurons, European Journal of Pharmacology, vol.132, issue.1, pp.61-63, 1986.
DOI : 10.1016/0014-2999(86)90010-5

W. Windischhofer and H. Leis, [3H]Bradykinin Receptor-Binding, Receptor-Recycling, and Receptor-Internalization of the B2 Bradykinin Receptor in the Murine Osteoblast-like Cell Line MC3T3-E1, Journal of Bone and Mineral Research, vol.276, issue.10, pp.1615-1625, 1997.
DOI : 10.1042/bj2760141

L. Wu, T. Sweet, and D. Clapham, International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family, Pharmacological Reviews, vol.62, issue.3, pp.381-404, 2010.
DOI : 10.1124/pr.110.002725

J. Xu, C. Hsu, H. Junker, S. Chao, E. Hogan et al., Kininogen and Kinin in Experimental Spinal Cord Injury, Journal of Neurochemistry, vol.5, issue.3, pp.975-980, 1991.
DOI : 10.1002/path.1711560204

F. Yanaga, M. Hirata, and T. Koga, Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1, Biochimica Et Biophysica Acta, vol.1094, issue.91, pp.139-146, 1991.

M. Yanagisawa and M. Otsuka, Pharmacological profile of a tachykinin antagonist, spantide, as examined on rat spinal motoneurones, British Journal of Pharmacology, vol.22, issue.4, pp.711-716, 1990.
DOI : 10.1016/0167-0115(88)90408-9

K. Yano, H. Higashida, H. Hattori, and Y. Nozawa, Bradykinin-induced transient accumulation of inositol trisphosphate in neuron-like cell line NG108-15 cells, FEBS Letters, vol.18185, pp.403-406, 1985.

K. Yano, H. Higashida, R. Inoue, and Y. Nozawa, Bradykinin-induced rapid breakdown of phosphatidylinositol 4,5-bisphosphate in neuroblastoma X glioma hybrid NG108-15 cells, The Journal of Biological Chemistry, vol.259, pp.10201-10207, 1984.

X. Zhang, L. Li, and P. Mcnaughton, Proinflammatory Mediators Modulate the Heat-Activated Ion Channel TRPV1 via the Scaffolding Protein AKAP79/150, Neuron, vol.59, issue.3, pp.450-461, 2008.
DOI : 10.1016/j.neuron.2008.05.015