M. Zidanic and W. Brownell, Fine structure of the intracochlear potential field. I. The silent current, Biophysical Journal, vol.57, issue.6, pp.1253-1268, 1990.
DOI : 10.1016/S0006-3495(90)82644-8

H. Hibino and Y. Kurachi, Molecular and physiological bases of the K þ circulation in the mammalian inner ear, Physiology (Bethesda), vol.21, pp.336-345, 2006.

A. A. Zdebik, P. Wangemann, and T. J. Jentsch, Potassium Ion Movement in the Inner Ear: Insights from Genetic Disease and Mouse Models, Physiology, vol.24, issue.5, pp.307-316, 2009.
DOI : 10.1016/S0006-3495(90)82644-8

D. J. Jagger and A. Forge, The enigmatic root cell ??? Emerging roles contributing to fluid homeostasis within the cochlear outer sulcus, Hearing Research, vol.303, pp.1-11, 2013.
DOI : 10.1016/j.heares.2012.10.010

T. Konishi, P. E. Hamrick, and P. J. Walsh, Ion Transport in Guinea Pig Cochlea:I. Potassium and Sodium Transport, Acta Oto-Laryngologica, vol.71, issue.1-6, pp.22-34, 1978.
DOI : 10.1121/1.1906928

S. S. Spicer and B. A. Schulte, The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency, Hearing Research, vol.100, issue.1-2, pp.80-100, 1996.
DOI : 10.1016/0378-5955(96)00106-2

S. S. Spicer and B. A. Schulte, Evidence for a medial K+ recycling pathway from inner hair cells, Hearing Research, vol.118, issue.1-2, pp.1-12, 1998.
DOI : 10.1016/S0378-5955(98)00006-9

P. Wangemann, Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential, The Journal of Physiology, vol.57, issue.Suppl., pp.11-21, 2006.
DOI : 10.1016/S0006-3495(90)82644-8

3. A. Duvall, THE ULTRASTRUCTURE OF THE EXTERNAL SULCUS IN THE GUINEA PIG COCHLEAR DUCT, The Laryngoscope, vol.79, issue.1, pp.1-29, 1969.
DOI : 10.1288/00005537-196901000-00001

T. Chiba and D. C. Marcus, Basolateral K + Conductance Establishes Driving Force for Cation Absorption by Outer Sulcus Epithelial Cells, Journal of Membrane Biology, vol.184, issue.2, pp.101-112, 2001.
DOI : 10.1007/s00232-001-0079-0

C. Kubisch, KCNQ4, a Novel Potassium Channel Expressed in Sensory Outer Hair Cells, Is Mutated in Dominant Deafness, Cell, vol.96, issue.3, pp.437-446, 1999.
DOI : 10.1016/S0092-8674(00)80556-5

T. Kharkovets, Mice with altered KCNQ4 K+ channels implicate sensory outer hair cells in human progressive deafness, The EMBO Journal, vol.405, issue.3, pp.642-652, 2006.
DOI : 10.1113/jphysiol.1996.sp021715

T. Boettger, Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold, The EMBO Journal, vol.22, issue.20, pp.5422-5434, 2003.
DOI : 10.1093/emboj/cdg519

T. Boettger, Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4, Nature, vol.262, issue.6883, pp.874-878, 2002.
DOI : 10.1038/35107099

D. Jagger, G. Nevill, and A. Forge, The Membrane Properties of Cochlear Root Cells are Consistent with Roles in Potassium Recirculation and Spatial Buffering, Journal of the Association for Research in Otolaryngology, vol.209, issue.Pt 3, pp.435-448, 2010.
DOI : 10.1016/B978-0-08-041847-6.50011-3

D. C. Marcus, T. Wu, P. Wangemann, and P. Kofuji, KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential, American Journal of Physiology-Cell Physiology, vol.22, issue.2, pp.403-407, 2002.
DOI : 10.1159/000027753

URL : http://ajpcell.physiology.org/content/ajpcell/282/2/C403.full.pdf

E. Delpire, J. Lu, R. England, C. Dull, and T. Thorne, Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter, Nature Genetics, vol.91, issue.2, pp.192-195, 1999.
DOI : 10.1073/pnas.91.10.4303

R. C. Diaz, Conservation of Hearing by Simultaneous Mutation of Na,K-ATPase and NKCC1, Journal of the Association for Research in Otolaryngology, vol.130, issue.4, pp.422-434, 2007.
DOI : 10.1177/37.2.2536055

T. Kikuchi, J. C. Adams, Y. Miyabe, E. So, and T. Kobayashi, Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness, Medical Electron Microscopy, vol.33, issue.2, pp.51-56, 2000.
DOI : 10.1007/s007950070001

T. Kikuchi, R. S. Kimura, D. L. Paul, T. Takasaka, and J. C. Adams, Gap junction systems in the mammalian cochlea, Brain Research Reviews, vol.32, issue.1, pp.163-166, 2000.
DOI : 10.1016/S0165-0173(99)00076-4

P. Enyedi and G. Czirjak, Currents: Two-Pore Domain Potassium Channels, Physiological Reviews, vol.22, issue.2, pp.559-605, 2010.
DOI : 10.1038/22761

F. Lesage and J. Barhanin, Molecular physiology of pH-sensitive background K(2P) channels, Physiology (Bethesda), vol.26, pp.424-437, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00731873

R. Warth, Proximal renal tubular acidosis in TASK2 K þ channeldeficient mice reveals a mechanism for stabilizing bicarbonate transport, Proc. Natl Acad. Sci. USA 101, pp.8215-8220, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00092326

D. K. Mulkey, TASK Channels Determine pH Sensitivity in Select Respiratory Neurons But Do Not Contribute to Central Respiratory Chemosensitivity, Journal of Neuroscience, vol.27, issue.51, pp.14049-14058, 2007.
DOI : 10.1523/JNEUROSCI.4254-07.2007

C. Gestreau, Task2 potassium channels set central respiratory CO2 and O2 sensitivity, Proc. Natl Acad. Sci. USA, pp.2325-2330, 2010.
DOI : 10.1016/S0304-3940(97)13458-9

URL : https://hal.archives-ouvertes.fr/hal-00482320

S. Wang, TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons, Journal of Neuroscience, vol.33, issue.41, pp.16033-16044, 2013.
DOI : 10.1523/JNEUROSCI.2451-13.2013

I. S. Gabashvili, B. H. Sokolowski, C. C. Morton, and A. B. Giersch, Ion Channel Gene Expression in the Inner Ear, Journal of the Association for Research in Otolaryngology, vol.97, issue.Pt 3, pp.305-328, 2007.
DOI : 10.1007/s10162-003-4042-x

W. C. Chen and R. L. Davis, Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons, Hearing Research, vol.222, issue.1-2, pp.89-99, 2006.
DOI : 10.1016/j.heares.2006.09.002

S. H. Kim, Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner's membrane epithelium, American Journal of Physiology-Cell Physiology, vol.296, issue.3, pp.544-557, 2009.
DOI : 10.1016/S0006-3495(99)77135-3

R. Kanjhan, C. L. Balke, G. D. Housley, M. C. Bellingham, and P. G. Noakes, Developmental expression of two-pore domain K+ channels, TASK-1 and TREK-1, in the rat cochlea, NeuroReport, vol.15, issue.3, pp.437-441, 2004.
DOI : 10.1097/00001756-200403010-00011

M. Webster and D. B. Webster, Spiral ganglion neuron loss following organ of corti loss: A quantitative study, Brain Research, vol.212, issue.1, pp.17-30, 1981.
DOI : 10.1016/0006-8993(81)90028-7

L. A. Everett, Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome, Human Molecular Genetics, vol.10, issue.2, pp.153-161, 2001.
DOI : 10.1093/hmg/10.2.153

I. E. Royaux, Localization and Functional Studies of Pendrin in the Mouse Inner Ear Provide Insight About the Etiology of Deafness in Pendred Syndrome, JARO - Journal of the Association for Research in Otolaryngology, vol.4, issue.3, pp.394-404, 2003.
DOI : 10.1007/s10162-002-3052-4

P. Wangemann, reabsorption in a Pendred syndrome mouse model, American Journal of Physiology-Renal Physiology, vol.292, issue.5, pp.1345-1353, 2007.
DOI : 10.1016/j.bbrc.2005.04.053

F. Lang, V. Vallon, M. Knipper, and P. Wangemann, Functional significance of channels and transporters expressed in the inner ear and kidney, American Journal of Physiology-Cell Physiology, vol.293, issue.4, pp.1187-1208, 2007.
DOI : 10.1016/S0006-3495(90)82644-8

H. Hibino, -2 (Kir4.1), in Cochlear Stria Vascularis of Inner Ear: Its Specific Subcellular Localization and Correlation with the Formation of Endocochlear Potential, The Journal of Neuroscience, vol.17, issue.12, pp.4711-4721, 1997.
DOI : 10.1523/JNEUROSCI.17-12-04711.1997

M. Ando and S. Takeuchi, Immunological identification of an inward rectifier K + channel (Kir4.1) in the intermediate cell (melanocyte) of the cochlear stria vascularis of gerbils and rats, Cell and Tissue Research, vol.298, issue.1, pp.179-183, 1999.
DOI : 10.1007/s004419900066

P. Wangemann, K+ cycling and the endocochlear potential, Hearing Research, vol.165, issue.1-2, pp.1-9, 2002.
DOI : 10.1016/S0378-5955(02)00279-4

W. Wang, 7.1 potassium channel essential for sensing external potassium ions, The Journal of General Physiology, vol.267, issue.3, pp.201-212, 2015.
DOI : 10.1016/S0378-5955(99)00003-9

URL : https://hal.archives-ouvertes.fr/hal-01077624

P. Wangemann, Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model, BMC Medicine, vol.66, issue.1, p.30, 2004.
DOI : 10.1146/annurev.physiol.66.041002.142720

T. Kharkovets, KCNQ4, a K þ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway, Proc. Natl Acad. Sci. USA 97, pp.4333-4338, 2000.

J. J. Kelly, A. Forge, and D. J. Jagger, Development of gap junctional intercellular communication within the lateral wall of the rat cochlea, Neuroscience, vol.180, pp.360-369, 2011.
DOI : 10.1016/j.neuroscience.2011.02.011

L. Van-laer, The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss, Human Mutation, vol.20, issue.8, pp.786-795, 2006.
DOI : 10.1161/01.CIR.102.10.1178

G. Rickheit, Endocochlear potential depends on Cl??? channels: mechanism underlying deafness in Bartter syndrome IV, The EMBO Journal, vol.62, issue.21, pp.2907-2917, 2008.
DOI : 10.1007/s00467-006-0090-x

E. E. Norgett, Atp6v0a4 knockout mouse is a model of distal renal tubular acidosis with hearing loss, with additional extrarenal phenotype, Proc. Natl Acad. Sci. USA, pp.13775-13780, 2012.
DOI : 10.1016/0014-4827(65)90373-3

R. Reyes, Channel from Human Kidney, Journal of Biological Chemistry, vol.270, issue.47, pp.30863-30869, 1998.
DOI : 10.1016/S0028-3908(97)00029-4

P. G. Guyenet, R. L. Stornetta, and D. A. Bayliss, Central respiratory chemoreception, The Journal of Comparative Neurology, vol.139, issue.19, pp.3883-3906, 2010.
DOI : 10.1113/jphysiol.1984.sp015370

URL : http://europepmc.org/articles/pmc2929977?pdf=render

Y. L. Cui, A. G. Holt, C. A. Lomax, and R. A. Altschuler, Deafness associated changes in two-pore domain potassium channels in the rat inferior colliculus, Neuroscience, vol.149, issue.2, pp.421-433, 2007.
DOI : 10.1016/j.neuroscience.2007.05.054

M. Pawelczyk, Ion Circulation in the Inner Ear of Patients Susceptible and Resistant to Noise-induced Hearing Loss, Annals of Human Genetics, vol.11, issue.4, pp.411-421, 2009.
DOI : 10.1161/01.CIR.102.10.1178

B. G. Peng, Acid-Sensing Ion Channel 2 Contributes a Major Component to Acid-Evoked Excitatory Responses in Spiral Ganglion Neurons and Plays a Role in Noise Susceptibility of Mice, Journal of Neuroscience, vol.24, issue.45, pp.10167-10175, 2004.
DOI : 10.1523/JNEUROSCI.3196-04.2004

K. K. Ohlemiller, A. R. Dahl, and P. M. Gagnon, Divergent Aging Characteristics in CBA/J and CBA/CaJ Mouse Cochleae, Journal of the Association for Research in Otolaryngology, vol.4, issue.Suppl. 112, pp.605-623, 2010.
DOI : 10.1001/archotol.1972.00770090054005

K. J. Mitchell, Functional analysis of secreted and transmembrane proteins critical to mouse development, Nature Genetics, vol.374, issue.3, pp.241-249, 2001.
DOI : 10.1038/374350a0

I. Sawada, M. Kitahara, and Y. Yazawa, Swimming Test for Evaluating Vestibular Function in Guinea Pigs, Acta Oto-Laryngologica, vol.74, issue.sup510, pp.20-23, 1994.
DOI : 10.5631/jibirin.74.10special_2418

K. N. Alagramam, A new mouse insertional mutation that causes sensorineural deafness and vestibular defects, Genetics, vol.152, pp.1691-1699, 1999.

I. E. Royaux, ), Is an Apical Porter of Iodide in the Thyroid and Is Regulated by Thyroglobulin in FRTL-5 Cells, Endocrinology, vol.141, issue.2, pp.839-845, 2000.
DOI : 10.1210/endo.141.2.7303

I. E. Royaux, Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion, Proc. Natl Acad. Sci. USA 98, pp.4221-4226, 2001.
DOI : 10.1038/969