C. D. Acosta, A. Dadu, A. Ramsay, and M. Dara, Drug-resistant tuberculosis in Eastern Europe: challenges and ways forward, Public Health Action, vol.4, issue.2, pp.3-12, 2014.
DOI : 10.5588/pha.14.0087

G. Gunther, Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges, Clinical Medicine, vol.14, issue.3, pp.279-28514, 2014.
DOI : 10.7861/clinmedicine.14-3-279

S. H. Kaufmann, J. Weiner, and C. Von-reyn, Novel approaches to tuberculosis vaccine development, International Journal of Infectious Diseases, vol.56, pp.263-267, 2017.
DOI : 10.1016/j.ijid.2016.10.018

URL : https://doi.org/10.1016/j.ijid.2016.10.018

G. Riccardi, I. G. Old, and S. Ekins, Raising awareness of the importance of funding for tuberculosis small-molecule research, Drug Discovery Today, vol.22, issue.3, pp.487-491, 2017.
DOI : 10.1016/j.drudis.2016.09.012

P. Santucci, Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis, Frontiers in Cellular and Infection Microbiology, vol.24, issue.98, 2016.
DOI : 10.1016/j.ceb.2012.05.012

URL : https://hal.archives-ouvertes.fr/hal-01455789

P. J. Brennan, Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis, Tuberculosis, vol.83, issue.1-3, pp.91-97, 2003.
DOI : 10.1016/S1472-9792(02)00089-6

E. C. Hett and E. J. Rubin, Bacterial Growth and Cell Division: a Mycobacterial Perspective, Microbiology and Molecular Biology Reviews, vol.72, issue.1, pp.126-15600028, 2008.
DOI : 10.1128/MMBR.00028-07

A. Zumla, P. Nahid, and S. T. Cole, Advances in the development of new tuberculosis drugs and treatment regimens, Nature Reviews Drug Discovery, vol.109, issue.5, pp.388-404, 2013.
DOI : 10.1073/pnas.1205735109

T. Kurokawa, Cyclophostin, acetylocholinesterase inhibitor from Streptomyces lavendulae., The Journal of Antibiotics, vol.46, issue.8, pp.1315-13181315, 1993.
DOI : 10.7164/antibiotics.46.1315

L. Vertesy, Cyclipostins, Novel Hormone-sensitive Lipase Inhibitors from Streptomyces sp. DSM 13381. II. Isolation, Structure Elucidation and Biological Properties., The Journal of Antibiotics, vol.55, issue.5, pp.480-494, 2002.
DOI : 10.7164/antibiotics.55.480

G. Seibert, L. Toti, and J. Wink, Treating mycobacterial infections with cyclipostins. Sanofi-Aventis Deutschland GmbH patent WO, p.25449, 2008.

S. Bandyopadhyay, S. Dutta, C. D. Spilling, C. M. Dupureur, and N. P. Rath, Synthesis and Biological Evaluation of a Phosphonate Analog of the Natural Acetyl Cholinesterase Inhibitor Cyclophostin, The Journal of Organic Chemistry, vol.73, issue.21, pp.8386-8391, 2008.
DOI : 10.1021/jo801453v

R. K. Malla, S. Bandyopadhyay, C. D. Spilling, S. Dutta, and C. M. Dupureur, The First Total Synthesis of (??)-Cyclophostin and (??)-Cyclipostin P: Inhibitors of the Serine Hydrolases Acetyl Cholinesterase and Hormone Sensitive Lipase, Organic Letters, vol.13, issue.12, pp.3094-3097, 2011.
DOI : 10.1021/ol200991x

S. Dutta, R. K. Malla, S. Bandyopadhyay, C. D. Spilling, and C. M. Dupureur, Synthesis and kinetic analysis of some phosphonate analogs of cyclophostin as inhibitors of human acetylcholinesterase, Bioorganic & Medicinal Chemistry, vol.18, issue.6, pp.2265-2274, 2010.
DOI : 10.1016/j.bmc.2010.01.063

V. Point, Synthesis and Kinetic Evaluation of Cyclophostin and Cyclipostins Phosphonate Analogs As Selective and Potent Inhibitors of Microbial Lipases, Journal of Medicinal Chemistry, vol.55, issue.22, pp.10204-10219, 2012.
DOI : 10.1021/jm301216x

B. P. Martin, E. Vasilieva, C. M. Dupureur, and C. Spilling, Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin, Bioorganic & Medicinal Chemistry, vol.23, issue.24, pp.7529-7534044, 2015.
DOI : 10.1016/j.bmc.2015.10.044

E. Vasilieva, Rat hormone sensitive lipase inhibition by cyclipostins and their analogs, Bioorganic & Medicinal Chemistry, vol.23, issue.5, pp.944-952028, 2015.
DOI : 10.1016/j.bmc.2015.01.028

URL : http://europepmc.org/articles/pmc4340684?pdf=render

T. Christophe, High Content Screening Identifies Decaprenyl-Phosphoribose 2??? Epimerase as a Target for Intracellular Antimycobacterial Inhibitors, PLoS Pathogens, vol.149, issue.10, 2009.
DOI : 10.1371/journal.ppat.1000645.s010

M. Flipo, Ethionamide Boosters: Synthesis, Biological Activity, and Structure???Activity Relationships of a Series of 1,2,4-Oxadiazole EthR Inhibitors, Journal of Medicinal Chemistry, vol.54, issue.8, pp.2994-3010, 2011.
DOI : 10.1021/jm200076a

B. F. Cravatt, A. T. Wright, and J. W. Kozarich, Activity-Based Protein Profiling: From Enzyme Chemistry to Proteomic Chemistry, Annual Review of Biochemistry, vol.77, issue.1, pp.383-414, 2008.
DOI : 10.1146/annurev.biochem.75.101304.124125

M. P. Patricelli, D. K. Giang, L. M. Stamp, and J. J. Burbaum, Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes, 9<1067::AID- PROT1067>3.0.CO, pp.1067-10712, 2001.
DOI : 10.1002/1615-9861(200109)1:9<1067::AID-PROT1067>3.0.CO;2-4

Y. Liu, M. P. Patricelli, and B. Cravatt, Activity-based protein profiling: The serine hydrolases, Proceedings of the National Academy of Sciences, vol.19, issue.11, pp.14694-14699, 1999.
DOI : 10.1002/elps.1150191103

URL : http://www.pnas.org/content/96/26/14694.full.pdf

D. Leung, C. Hardouin, D. L. Boger, and B. Cravatt, Discovering potent and selective reversible inhibitors of enzymes in complex proteomes, Nature Biotechnology, vol.9, issue.6, pp.687-691, 2003.
DOI : 10.1016/S1074-5521(02)00248-X

M. S. Ravindran, Targeting Lipid Esterases in Mycobacteria Grown Under Different Physiological Conditions Using Activity-based Profiling with Tetrahydrolipstatin (THL), Molecular & Cellular Proteomics, vol.18, issue.2, pp.435-448, 2014.
DOI : 10.1039/c0cc01276a

J. Lehmann, Human lysosomal acid lipase inhibitor lalistat impairs Mycobacterium tuberculosis growth by targeting bacterial hydrolases, MedChemComm, vol.7, issue.4, pp.1797-1801, 2016.
DOI : 10.1371/journal.pone.0046493

URL : http://pubs.rsc.org/en/content/articlepdf/2016/md/c6md00231e

C. Ortega, Systematic Survey of Serine Hydrolase Activity in Mycobacterium tuberculosis Defines Changes Associated with Persistence, Cell Chemical Biology, vol.23, issue.2, pp.290-298, 2016.
DOI : 10.1016/j.chembiol.2016.01.003

N. S. Osório, Evidence for Diversifying Selection in a Set of Mycobacterium tuberculosis Genes in Response to Antibiotic- and Nonantibiotic-Related Pressure, Molecular Biology and Evolution, vol.7, issue.6, pp.1326-1336, 2013.
DOI : 10.1089/10665270050081478

A. Kumar, K. Saigal, K. Malhotra, K. M. Sinha, and B. Taneja, Structural and Functional Characterization of Rv2966c Protein Reveals an RsmD-like Methyltransferase from Mycobacterium tuberculosis and the Role of Its N-terminal Domain in Target Recognition, The Journal of Biological Chemistry, vol.286, 2011.

L. S. Meena, P. Chopra, R. A. Vishwakarma, and Y. Singh, Abstract, Biological Chemistry, vol.394, issue.7, pp.871-8771515, 2013.
DOI : 10.1515/hsz-2013-0126

J. M. Johnston, M. Jiang, Z. Guo, and E. N. Baker, : testing a putative role in menaquinone biosynthesis, Acta Crystallographica Section D Biological Crystallography, vol.57, issue.8, pp.909-917, 2010.
DOI : 10.1107/S0907444910025771

D. Jadeja, N. Dogra, S. Arya, G. Singh, and J. Kaur, H37Rv and its Probable Role in Xenobiotic Degradation, Journal of Cellular Biochemistry, vol.3, issue.2, pp.390-40125285, 2016.
DOI : 10.1371/journal.pone.0002375

S. Canaan, Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis, European Journal of Biochemistry, vol.34, issue.19, pp.3953-3961, 2004.
DOI : 10.1016/0005-2760(88)90036-7

G. Singh, Characterization of an acid inducible lipase Rv3203 from Mycobacterium tuberculosis H37Rv, Molecular Biology Reports, vol.257, issue.23, pp.285-296, 2014.
DOI : 10.1371/journal.pone.0004281

K. Côtes, possibly involved in the metabolism of host cell membrane lipids, Biochemical Journal, vol.408, issue.3, pp.417-427, 2007.
DOI : 10.1042/BJ20070745

R. Dhouib, F. Laval, F. Carriere, M. Daffe, and S. Canaan, A Monoacylglycerol Lipase from Mycobacterium smegmatis Involved in Bacterial Cell Interaction, Journal of Bacteriology, vol.192, issue.18, pp.4776-478500261, 2010.
DOI : 10.1128/JB.00261-10

M. Schue, show very different lipolytic activities reflecting their physiological function, The FASEB Journal, vol.24, issue.6, pp.1893-190309, 2010.
DOI : 10.1111/j.1365-2958.2007.05761.x

URL : https://hal.archives-ouvertes.fr/hal-00497518

L. Dedieu, C. Serveau-avesque, and S. Canaan, Identification of Residues Involved in Substrate Specificity and Cytotoxicity of Two Closely Related Cutinases from Mycobacterium tuberculosis, PLoS ONE, vol.1791, issue.7, 2013.
DOI : 10.1371/journal.pone.0066913.t003

J. Guo, Characterization of a Novel Esterase Rv0045c from Mycobacterium tuberculosis, PLoS ONE, vol.5, issue.10, 2010.
DOI : 10.1371/journal.pone.0013143.t001

C. M. Sassetti, D. H. Boyd, and E. J. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Molecular Microbiology, vol.1, issue.Suppl 1), pp.77-84, 2003.
DOI : 10.1099/00221287-113-2-409

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2003.03425.x/pdf

J. C. Sacchettini and D. R. Ronning, The mycobacterial antigens 85 complex ??? from structure to function and beyond: Response, Trends in Microbiology, vol.8, issue.10, pp.966-842, 2000.
DOI : 10.1016/S0966-842X(00)01843-6

K. M. Backus, Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions, Journal of Biological Chemistry, vol.1473, issue.36, pp.25041-25053, 2014.
DOI : 10.1128/AAC.16.2.240

URL : http://www.jbc.org/content/289/36/25041.full.pdf

T. Warrier, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.56, issue.4, pp.1735-174305742, 2012.
DOI : 10.1128/AAC.05742-11

L. Alibaud, A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebraf ish embr yos. Molecular Microbiolog y 80, pp.919-934, 2011.

S. Lun, Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to ??-Lactams, mBio, vol.5, issue.5, pp.1767-1781, 1767.
DOI : 10.1128/mBio.01767-14

J. Rengarajan, B. R. Bloom, and E. J. Rubin, From The Cover: Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages, Proceedings of the National Academy of Sciences, pp.8327-83320503272102, 2005.
DOI : 10.1016/j.tim.2004.10.005

J. Rengarajan, Mycobacterium tuberculosis Rv2224c modulates innate immune responses, Proceedings of the National Academy of Sciences, vol.98, issue.22, pp.264-2690710601105, 2008.
DOI : 10.1073/pnas.231275498

URL : http://www.pnas.org/content/105/1/264.full.pdf

N. A. Lack, Characterization of a Carbon-Carbon Hydrolase from Mycobacterium tuberculosis Involved in Cholesterol Metabolism, Journal of Biological Chemistry, vol.255, issue.1, pp.434-443058081, 2010.
DOI : 10.1016/j.jmb.2006.11.016

A. Ryan, Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach, British Journal of Pharmacology, vol.5, issue.14, pp.2209-2224, 2017.
DOI : 10.1371/journal.ppat.1000344

R. A. Laskowski, M. B. Swindells, and . Ligplot+, LigPlot+: Multiple Ligand???Protein Interaction Diagrams for Drug Discovery, Journal of Chemical Information and Modeling, vol.51, issue.10, pp.2778-2786, 2011.
DOI : 10.1021/ci200227u

C. Deb, A Novel Lipase Belonging to the Hormone-sensitive Lipase Family Induced under Starvation to Utilize Stored Triacylglycerol in Mycobacterium tuberculosis, Journal of Biological Chemistry, vol.281, issue.7, pp.3866-3875, 2006.
DOI : 10.1074/jbc.M505556200

L. Dedieu, C. Serveau-avesque, L. Kremer, and S. Canaan, Mycobacterial lipolytic enzymes: A gold mine for tuberculosis research, Biochimie, vol.95, issue.1, pp.66-73, 2013.
DOI : 10.1016/j.biochi.2012.07.008

G. Johnson, The ??/?? Hydrolase Fold Proteins of Mycobacterium tuberculosis, with Reference to their Contribution to Virulence, Current Protein & Peptide Science, vol.18, issue.3, pp.190-2101389203717666160729093515, 2017.
DOI : 10.2174/1389203717666160729093515

P. Peyron, Foamy Macrophages from Tuberculous Patients' Granulomas Constitute a Nutrient-Rich Reservoir for M. tuberculosis Persistence, PLoS Pathogens, vol.39, issue.11, 2008.
DOI : 10.1371/journal.ppat.1000204.s002

K. L. Low, Triacylglycerol Utilization Is Required for Regrowth of In Vitro Hypoxic Nonreplicating Mycobacterium bovis Bacillus Calmette-Guerin, Journal of Bacteriology, vol.191, issue.16, pp.5037-504300530, 2009.
DOI : 10.1128/JB.00530-09

V. Delorme, MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth, PLoS ONE, vol.7, issue.9, 2012.
DOI : 10.1371/journal.pone.0046493.s004

C. Rens, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.60, issue.10, pp.6193-619900872, 2016.
DOI : 10.1128/AAC.00872-16

R. Engel, Phosphonates as analogues of natural phosphates, Chemical Reviews, vol.77, issue.3, pp.349-367, 1977.
DOI : 10.1021/cr60307a003

V. K. Sambandamurthy, Mycobacterium tuberculosis ??RD1 ??panCD: A safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis, Vaccine, vol.24, issue.37-39, pp.6309-6320, 2006.
DOI : 10.1016/j.vaccine.2006.05.097

R. Goude, D. M. Roberts, and T. Parish, Electrophoresis of Mycobacteria. Mycobacteria protocols, pp.117-130, 2015.

L. Kremer, W. N. Maughan, R. A. Wilson, L. G. Dover, and G. S. Besra, The M. tuberculosis antigen 85 complex and mycolyltransferase activity, Letters in Applied Microbiology, vol.68, issue.4, pp.233-237, 2002.
DOI : 10.1038/72413

J. C. Palomino, Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of Drug Resistance in Mycobacterium tuberculosis, Antimicrobial Agents and Chemotherapy, vol.46, issue.8, pp.2720-2722, 2002.
DOI : 10.1128/AAC.46.8.2720-2722.2002

A. Martin, M. Camacho, F. Portaels, and J. C. Palomino, Resazurin Microtiter Assay Plate Testing of Mycobacterium tuberculosis Susceptibilities to Second-Line Drugs: Rapid, Simple, and Inexpensive Method, Antimicrobial Agents and Chemotherapy, vol.47, issue.11, pp.3616-3619, 2003.
DOI : 10.1128/AAC.47.11.3616-3619.2003

A. Walzl, A Simple and Cost Efficient Method to Avoid Unequal Evaporation in Cellular Screening Assays, Which Restores Cellular Metabolic Activity, Int. J. Appl. Sci. Technol, vol.2, pp.17-21, 2012.

P. C. William, R. Jacobs, and J. , Bénarouche post-doctoral fellowship was supported by an ATER position from Aix-Marseille University. A. Madani was supported by a PhD fellowship from the Association Grégory Lemarchal and Vaincre la Mucoviscidose (projet n°RF20160501651). Dr, is acknowledged for providing M. tb mc 2 6230 and Kris Huygen for providing the Ag85 monoclonal antibody