F. M. Ausubel, Are innate immune signaling pathways in plants and animals conserved?, Nature Immunology, vol.434, issue.10, pp.973-979, 1253.
DOI : 10.1038/nature03419

N. Baenas, C. Garcia-viguera, and D. A. Moreno, Sprouts, Journal of Agricultural and Food Chemistry, vol.62, issue.8, pp.1881-1889, 2014.
DOI : 10.1021/jf404876z

L. Barker, C. Kuhn, A. Weise, A. Schulz, C. Gebhardt et al., SUT2, a Putative Sucrose Sensor in Sieve Elements, THE PLANT CELL ONLINE, vol.12, issue.7, pp.1153-1164, 2000.
DOI : 10.1105/tpc.12.7.1153

D. H. Barratt, P. Derbyshire, K. Findlay, M. Pike, N. Wellner et al., Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase, Proceedings of the National Academy of Sciences, vol.438, issue.7070, pp.13124-13129, 2009.
DOI : 10.1038/nature04198

N. Benhamou, J. Grenier, and M. J. Chrispeels, Accumulation of betafructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen, Plant Physiol, vol.972, pp.739-750, 1991.

M. R. Bolouri-moghaddam and W. Van-den-ende, Sugars and plant innate immunity, Journal of Experimental Botany, vol.218, issue.14, pp.3989-3998, 2012.
DOI : 10.1007/s00425-003-1148-7

M. R. Bolouri-moghaddam and W. Van-den-ende, Sweet immunity in the plant circadian regulatory network, Journal of Experimental Botany, vol.127, issue.6, pp.1439-1449, 2013.
DOI : 10.1111/j.1399-3054.2006.00660.x

K. B. Bonfig, A. Gabler, U. K. Simon, N. Luschin-ebengreuth, M. Hatz et al., Post-Translational Derepression of Invertase Activity in Source Leaves via Down-Regulation of Invertase Inhibitor Expression Is Part of the Plant Defense Response, Molecular Plant, vol.3, issue.6, pp.1037-1048, 1093.
DOI : 10.1093/mp/ssq053

L. Q. Chen, B. H. Hou, S. Lalonde, H. Takanaga, M. L. Hartung et al., Sugar transporters for intercellular exchange and nutrition of pathogens, Nature, vol.22, issue.7323, pp.527-532, 1038.
DOI : 10.1155/2008/420747

X. Y. Chen, K. , and J. Y. , Callose synthesis in higher plants, Plant Signaling & Behavior, vol.13, issue.6, pp.489-492, 2009.
DOI : 10.1007/s00425-008-0812-3

J. I. Cho, S. K. Lee, S. Ko, H. K. Kim, S. H. Jun et al., Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.), Plant Cell Reports, vol.296, issue.4, pp.225-236, 2005.
DOI : 10.1016/S0176-1617(99)80007-8

J. I. Cho, N. Ryoo, J. S. Eom, D. W. Lee, H. B. Kim et al., Role of the Rice Hexokinases OsHXK5 and OsHXK6 as Glucose Sensors, PLANT PHYSIOLOGY, vol.149, issue.2, pp.745-759, 2009.
DOI : 10.1104/pp.108.131227

Y. H. Cho and S. D. Yoo, Signaling Role of Fructose Mediated by FINS1/FBP in Arabidopsis thaliana, PLoS Genetics, vol.29, issue.1, 2011.
DOI : 10.1371/journal.pgen.1001263.s011

H. M. Chou, N. Bundock, S. A. Rolfe, and J. D. Scholes, Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism, Molecular Plant Pathology, vol.118, issue.2, pp.99-113, 2000.
DOI : 10.1111/j.1469-8137.1991.tb00995.x

Z. W. Dai, M. Meddar, C. Renaud, I. Merlin, G. Hilbert et al., Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation, Journal of Experimental Botany, vol.58, issue.16, 2014.
DOI : 10.1007/s10725-009-9373-0

N. Dalchau, S. J. Baek, H. M. Briggs, F. C. Robertson, A. N. Dodd et al., The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose, Proceedings of the National Academy of Sciences, vol.12, issue.3, pp.5104-5109, 2011.
DOI : 10.1177/074873049701200302

J. L. Dangl and J. D. Jones, Plant pathogens and integrated defence responses to infection, Nature, vol.26, issue.6839, pp.826-833, 2001.
DOI : 10.1038/82521

R. A. Dixon and N. L. Paiva, Stress-induced phenylpropanoid metabolism, Plant Cell, vol.7, 1995.
DOI : 10.1105/tpc.7.7.1085

URL : http://www.plantcell.org/content/plantcell/7/7/1085.full.pdf

T. Engelsdorf, R. J. Horst, R. Prols, M. Proschel, F. Dietz et al., Reduced Carbohydrate Availability Enhances the Susceptibility of Arabidopsis toward Colletotrichum higginsianum, PLANT PHYSIOLOGY, vol.162, issue.1, pp.225-238, 2013.
DOI : 10.1104/pp.112.209676

J. Essmann, P. Bones, E. Weis, and J. Scharte, Leaf carbohydrate metabolism during defense, Plant Signaling & Behavior, vol.3, issue.10, pp.885-887, 2008.
DOI : 10.1016/j.mib.2005.06.008

URL : https://www.tandfonline.com/doi/pdf/10.4161/psb.3.10.6501?needAccess=true

J. Essmann, I. Schmitz-thom, H. Schon, S. Sonnewald, E. Weis et al., RNA Interference-Mediated Repression of Cell Wall Invertase Impairs Defense in Source Leaves of Tobacco, PLANT PHYSIOLOGY, vol.147, issue.3, pp.1288-1299, 2008.
DOI : 10.1104/pp.108.121418

R. R. Finkelstein, S. S. Gampala, R. , and C. D. , Abscisic Acid Signaling in Seeds and Seedlings, The Plant Cell, vol.14, issue.suppl 1, pp.15-45, 2002.
DOI : 10.1105/tpc.010441

V. Fotopoulos, M. J. Gilbert, J. K. Pittman, A. C. Marvier, A. J. Buchanan et al., The Monosaccharide Transporter Gene, AtSTP4, and the Cell-Wall Invertase, At??fruct1, Are Induced in Arabidopsis during Infection with the Fungal Biotroph Erysiphe cichoracearum, PLANT PHYSIOLOGY, vol.132, issue.2, pp.821-829, 2003.
DOI : 10.1104/pp.103.021428

S. I. Gibson, Sugar and phytohormone response pathways: navigating a signalling network, Journal of Experimental Botany, vol.55, issue.395, pp.253-264, 2004.
DOI : 10.1093/jxb/erh048

URL : https://academic.oup.com/jxb/article-pdf/55/395/253/1687197/erh048.pdf

J. Gomez-ariza, S. Campo, M. Rufat, M. Estopa, J. Messeguer et al., Sucrose-Mediated Priming of Plant Defense Responses and Broad-Spectrum Disease Resistance by Overexpression of the Maize Pathogenesis-Related PRms Protein in Rice Plants, Molecular Plant-Microbe Interactions, vol.20, issue.7, pp.832-842, 2007.
DOI : 10.1094/MPMI-20-7-0832

D. L. Greenshields, F. Wang, G. Selvaraj, W. , and Y. D. , ) infected with powdery mildew, Canadian Journal of Plant Pathology, vol.112, issue.4, pp.506-513, 1080.
DOI : 10.1006/pmpp.1995.1055

S. Greiner, S. Krausgrill, and T. Rausch, Cloning of a tobacco apoplasmic invertase inhibitor. Proof of function of the recombinant protein and expression analysis during plant development, Plant Physiol, vol.1162, pp.733-742, 1998.

M. J. Haydon, O. Mielczarek, F. C. Robertson, K. E. Hubbard, and A. A. Webb, Photosynthetic entrainment of the Arabidopsis thaliana circadian clock, Nature, vol.22, issue.7473, pp.689-692, 1038.
DOI : 10.1093/emboj/cdg277

M. A. Hayes, A. Feechan, and I. B. Dry, Involvement of Abscisic Acid in the Coordinated Regulation of a Stress-Inducible Hexose Transporter (VvHT5) and a Cell Wall Invertase in Grapevine in Response to Biotrophic Fungal Infection, PLANT PHYSIOLOGY, vol.153, issue.1, pp.211-221, 2010.
DOI : 10.1104/pp.110.154765

M. Heil, E. Ibarra-laclette, R. M. Adame-alvarez, O. Martinez, E. Ramirez-chavez et al., How Plants Sense Wounds: Damaged-Self Recognition Is Based on Plant-Derived Elicitors and Induces Octadecanoid Signaling, PLoS ONE, vol.4, issue.2, 2012.
DOI : 10.1371/journal.pone.0030537.s005

URL : https://doi.org/10.1371/journal.pone.0030537

K. Herbers, P. Meuwly, W. B. Frommer, J. P. Metraux, and U. Sonnewald, Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway, THE PLANT CELL ONLINE, vol.8, issue.5, pp.793-803, 1996.
DOI : 10.1105/tpc.8.5.793

K. Herbers, Y. Takahata, M. Melzer, H. P. Mock, M. Hajirezaei et al., Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco, Molecular Plant Pathology, vol.9, issue.1, pp.51-59, 2000.
DOI : 10.1080/07352689109382300

M. Hothorn, S. Wolf, P. Aloy, S. Greiner, and K. Scheffzek, Structural Insights into the Target Specificity of Plant Invertase and Pectin Methylesterase Inhibitory Proteins, THE PLANT CELL ONLINE, vol.16, issue.12, pp.3437-3447, 2004.
DOI : 10.1105/tpc.104.025684

T. K. Hyun, S. H. Eom, Y. Rim, K. , and J. S. , Alteration of the expression and activation of tomato invertases during Botrytis cinerea infection, Plant Omics, vol.4, pp.413-417, 2011.

L. Jia, B. Zhang, C. Mao, J. Li, Y. Wu et al., OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.), Planta, vol.163, issue.1, pp.51-59, 2008.
DOI : 10.1104/pp.109.1.7

J. D. Jones and J. L. Dangl, The plant immune system, Nature, vol.308, issue.7117, pp.323-329, 2006.
DOI : 10.1126/science.1111404

F. Katagiri and K. Tsuda, Understanding the Plant Immune System, Molecular Plant-Microbe Interactions, vol.23, issue.12, pp.1531-1536, 2010.
DOI : 10.1094/MPMI-04-10-0099

S. Kitajima, F. H. Sato, A. J. Thomson, and H. G. Mcwatters, Plant pathogenesis-related proteins: molecular mechanisms of gene expression and protein function Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock, J. Biochem. Plant Physiol, vol.125, issue.148, pp.293-303, 1999.

N. Kocal, U. Sonnewald, and S. Sonnewald, Cell Wall-Bound Invertase Limits Sucrose Export and Is Involved in Symptom Development and Inhibition of Photosynthesis during Compatible Interaction between Tomato and Xanthomonas campestris pv vesicatoria, PLANT PHYSIOLOGY, vol.148, issue.3, pp.1523-1536, 2008.
DOI : 10.1104/pp.108.127977

K. Koch, Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development, Current Opinion in Plant Biology, vol.7, issue.3, pp.235-246, 2004.
DOI : 10.1016/j.pbi.2004.03.014

W. Lammens, L. Roy, K. Schroeven, L. Van-laere, A. Rabijns et al., Structural insights into glycoside hydrolase family 32 and 68 enzymes: functional implications, Journal of Experimental Botany, vol.132, issue.3, pp.727-740, 2009.
DOI : 10.1093/oxfordjournals.jbchem.a003258

URL : https://academic.oup.com/jxb/article-pdf/60/3/727/16925307/ern333.pdf

P. Leon and J. Sheen, Sugar and hormone connections, Trends in Plant Science, vol.8, issue.3, pp.110-116, 2003.
DOI : 10.1016/S1360-1385(03)00011-6

P. Li, J. J. Wind, X. Shi, H. Zhang, J. Hanson et al., Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain, Proceedings of the National Academy of Sciences, vol.19, issue.11, pp.3436-3441, 2011.
DOI : 10.1093/bioinformatics/btg157

Y. Li, W. Van-den-ende, R. , and F. , Sucrose Induction of Anthocyanin Biosynthesis Is Mediated by DELLA, Molecular Plant, vol.7, issue.3, pp.570-572, 2014.
DOI : 10.1093/mp/sst161

E. Luna, V. Pastor, J. Robert, V. Flors, B. Mauch-mani et al., Callose Deposition: A Multifaceted Plant Defense Response, Molecular Plant-Microbe Interactions, vol.24, issue.2, pp.183-193, 2011.
DOI : 10.1094/MPMI-07-10-0149

M. Maresca, From the Gut to the Brain: Journey and Pathophysiological Effects of the Food-Associated Trichothecene Mycotoxin Deoxynivalenol, Toxins, vol.58, issue.4, pp.784-820, 2013.
DOI : 10.1021/jf302069z

URL : https://hal.archives-ouvertes.fr/hal-01793412

M. L. Martin, L. Lechner, E. J. Zabaleta, and G. L. Salerno, A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis, Planta, vol.176, issue.3, pp.813-822, 2013.
DOI : 10.1016/j.plantsci.2009.02.002

B. Moore, L. Zhou, F. Rolland, Q. Hall, W. H. Cheng et al., Role of the Arabidopsis Glucose Sensor HXK1 in Nutrient, Light, and Hormonal Signaling, Science, vol.300, issue.5617, pp.332-336, 2003.
DOI : 10.1126/science.1080585

I. Morkunas, L. Marczak, J. Stachowiak, and M. Stobiecki, Sucroseinduced lupine defense against Fusarium oxysporum. Sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium Frontiers in Plant Science | Plant-Microbe Interaction, Article, vol.5, issue.293 6, 2005.
DOI : 10.1016/j.plaphy.2005.02.011

I. Morkunas, D. Narozna, W. Nowak, S. Samardakiewicz, and D. And-remlein-starosta, Cross-talk interactions of sucrose and Fusarium oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine, Journal of Plant Physiology, vol.168, issue.5, pp.424-433, 2011.
DOI : 10.1016/j.jplph.2010.08.017

R. S. Payyavula, R. K. Singh, D. A. Navarre, R. K. Proels, R. et al., Transcription factors , sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism doi: 10.1093/jxb Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions, J. Exp. Bot. J. Exp. Bot. Plant Cell, vol.64, issue.21, pp.5115-5131, 2009.
DOI : 10.1093/jxb/ert303

URL : https://academic.oup.com/jxb/article-pdf/64/16/5115/17137159/ert303.pdf

T. Roitsch and M. C. Gonzalez, Function and regulation of plant invertases: sweet sensations, Trends in Plant Science, vol.9, issue.12, 2004.
DOI : 10.1016/j.tplants.2004.10.009

F. Rolland, E. Baena-gonzalez, and J. Sheen, SUGAR SENSING AND SIGNALING IN PLANTS: Conserved and Novel Mechanisms, Annual Review of Plant Biology, vol.57, issue.1, pp.675-709, 2006.
DOI : 10.1146/annurev.arplant.57.032905.105441

S. Santi, D. Marco, F. Polizzotto, R. Grisan, S. Musetti et al., Recovery from stolbur disease in grapevine involves changes in sugar transport and metabolism, Frontiers in Plant Science, vol.4, 2013.
DOI : 10.3389/fpls.2013.00171

S. Santi, S. Grisan, A. Pierasco, F. Marco, and R. Musetti, Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism, Plant, Cell & Environment, vol.36, issue.2, pp.343-355, 2013.
DOI : 10.1093/abbs/36.11.773

S. Schaarschmidt, J. Kopka, J. Ludwig-muller, B. S. Hause, T. Roitsch et al., Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots, Plant J. J. Exp. Bot, vol.51, issue.57, pp.390-405, 2006.

J. Scharte, H. Schon, and E. Weis, Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae, Plant, Cell and Environment, vol.109, issue.11, pp.1421-1435, 2005.
DOI : 10.1105/tpc.3.10.1085

J. D. Scholes, P. J. Lee, P. Horton, L. , and D. H. , Invertase: understanding changes in the photosynthetic and carbohydrate metabolism of barley leaves infected with powdery mildew, New Phytologist, vol.118, issue.2, pp.213-222, 1994.
DOI : 10.1007/BF00035447

J. Sels, J. Mathys, B. M. De-coninck, B. P. Cammue, D. Bolle et al., Plant pathogenesis-related (PR) proteins: A focus on PR peptides, Plant Physiology and Biochemistry, vol.46, issue.11, pp.941-950, 2008.
DOI : 10.1016/j.plaphy.2008.06.011

J. Siemens, M. C. Gonzalez, S. Wolf, C. Hofmann, S. Greiner et al., Extracellular invertase is involved in the regulation of clubroot disease in Arabidopsis thaliana, Molecular Plant Pathology, vol.2, issue.3, pp.247-262, 2011.
DOI : 10.1371/journal.pone.0000718

C. Solfanelli, A. Poggi, E. Loreti, A. Alpi, and P. Perata, Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis, PLANT PHYSIOLOGY, vol.140, issue.2, pp.637-646, 2006.
DOI : 10.1104/pp.105.072579

S. Sonnewald, J. P. Priller, J. Schuster, E. Glickmann, M. R. Hajirezaei et al., Regulation of Cell Wall-Bound Invertase in Pepper Leaves by Xanthomonas campestris pv. vesicatoria Type Three Effectors, PLoS ONE, vol.101, issue.12, 2012.
DOI : 10.1371/journal.pone.0051763.s004

T. Storr and J. L. Hall, The effect of infection by Erysiphe pisi DC on acid and alkaline invertase activities and aspects of starch biochemistry in leaves of Pisum sativum L., New Phytologist, vol.82, issue.4, pp.535-543, 1992.
DOI : 10.1016/0304-4165(78)90223-4

A. Sturm and M. J. Chrispeels, cDNA Cloning of Carrot Extracellular [beta]-Fructosidase and Its Expression in Response to Wounding and Bacterial Infection, THE PLANT CELL ONLINE, vol.2, issue.11, pp.1107-1119, 1990.
DOI : 10.1105/tpc.2.11.1107

L. Sun, D. L. Yang, Y. Kong, Y. Chen, X. Z. Li et al., Sugar homeostasis mediated by cell wall invertase GRAIN INCOMPLETE FILLING 1 (GIF1) plays a role in pre-existing and induced defence in rice, Molecular Plant Pathology, vol.5, issue.2, pp.161-173, 2013.
DOI : 10.1093/mp/ssr076

P. N. Sutton, M. J. Gilbert, L. E. Williams, J. L. Hall, P. J. Swarbrick et al., Powdery mildew infection of wheat leaves changes host solute transport and invertase activity, Physiologia Plantarum, vol.60, issue.4, pp.787-795, 2006.
DOI : 10.1111/j.1469-8137.1991.tb00995.x

A. S. Tauzin, G. Sulzenbacher, M. Lafond, V. Desseaux, I. B. Reca et al., Functional characterization of a vacuolar invertase from Solanum lycopersicum: Post-translational regulation by N-glycosylation and a??proteinaceous inhibitor, Biochimie, vol.101, pp.39-49, 2014.
DOI : 10.1016/j.biochi.2013.12.013

S. Teng, J. Keurentjes, L. Bentsink, M. Koornneef, and S. Smeekens, Sucrose-Specific Induction of Anthocyanin Biosynthesis in Arabidopsis Requires the MYB75/PAP1 Gene, PLANT PHYSIOLOGY, vol.139, issue.4, pp.1840-1852, 2005.
DOI : 10.1104/pp.105.066688

I. J. Tetlow, J. F. Farrar, S. Gineste, L. Nussaume, R. et al., Sucrose-Metabolizing Enzymes from leaves of barley infected with brown rust (Puccinia-Hordei Otth) New Phytol Sucrose increases pathogenesis-related PR-2 gene expression in Arabidopsis thaliana through an SA-dependent but NPR1-independent signaling pathway, Plant Physiol. Biochem, vol.120, issue.42, pp.475-480, 1992.

E. Thines, R. W. Weber, T. , and N. J. , MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea, Plant Cell, vol.12, pp.1703-1718, 2000.

J. A. Tognetti, H. G. Pontis, and G. M. Martinez-noel, Sucrose signaling in plants: A world yet to be explored, Plant Signal Behav, 2013.

L. C. Van-loon, M. Rep, and C. M. Pieterse, Significance of Inducible Defense-related Proteins in Infected Plants, Annual Review of Phytopathology, vol.44, issue.1, 2006.
DOI : 10.1146/annurev.phyto.44.070505.143425

W. A. Vargas and G. L. Salerno, The Cinderella story of sucrose hydrolysis: Alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles, Plant Science, vol.178, issue.1, 2010.
DOI : 10.1016/j.plantsci.2009.09.015

M. W. Vaughn, G. N. Harrington, and D. R. Bush, Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem, Proc. Natl, 2002.
DOI : 10.1104/pp.125.1.65

R. T. Voegele, S. Wirsel, U. Moll, M. Lechner, and K. Mendgen, and Analysis of Expression Patterns of Host and Pathogen Invertases in the Course of Infection, Molecular Plant-Microbe Interactions, vol.19, issue.6, pp.625-634, 2006.
DOI : 10.1094/MPMI-19-0625

R. Wachter, M. Langhans, R. Aloni, S. Gotz, A. Weilmunster et al., Vascularization, High-Volume Solution Flow, and Localized Roles for Enzymes of Sucrose Metabolism during Tumorigenesis by Agrobacterium tumefaciens, PLANT PHYSIOLOGY, vol.133, issue.3, pp.1024-1037, 2003.
DOI : 10.1104/pp.103.028142

S. J. Wang, K. W. Yeh, and C. Y. Tsai, Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato, Plant Science, vol.161, issue.4, pp.635-644, 2001.
DOI : 10.1016/S0168-9452(01)00449-6

W. Wang, J. Y. Barnaby, Y. Tada, H. Li, M. Tor et al., Timing of plant immune responses by a central circadian regulator, Nature, vol.6, issue.7332, pp.110-114, 1038.
DOI : 10.1105/tpc.6.11.1583

T. Welham, J. Pike, I. Horst, E. Flemetakis, P. Katinakis et al., A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus, Journal of Experimental Botany, vol.19, issue.12, pp.3353-3365, 2009.
DOI : 10.1016/S0735-2689(01)80002-2

D. P. Wright, B. C. Baldwin, M. C. Shephard, and J. D. Scholes, Sourcesink relationships in wheat leaves infected with powdery mildew.1. Alterations www.frontiersin, Article, vol.5, issue.293 7, 1995.