S. B. Mellor, K. Vavitsas, A. Z. Nielsen, and P. Jensen, Photosynthetic fuel for heterologous enzymes: the role of electron carrier proteins, CrossRef] [PubMed] 2. Ilbert, M.; Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys, pp.329-342, 2017.
DOI : 10.1186/1754-6834-6-86

A. Bioenerg-aussignargues, C. Prunetti, L. Infossi, P. Ilbert, M. Giudici-orticoni et al., The energy sulfur metabolism of the hyperthermophilic bacterium Aquifex aeolicus, Biochim. Biophys. Acta Bioenerg, pp.161-175, 1827.

M. J. Moehlenbrock and S. D. Minteer, Extended lifetime biofuel cells, Chemical Society Reviews, vol.158, issue.6, pp.1188-1196, 2008.
DOI : 10.1016/j.polymer.2004.11.092

G. Maduraiveeran, M. Sasidharan, and V. Ganesan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications, Biosensors and Bioelectronics, vol.103, pp.113-129, 2018.
DOI : 10.1016/j.bios.2017.12.031

C. I. Justino, A. C. Duarte, and T. A. Rocha-santos, Recent Progress in Biosensors for Environmental Monitoring: A Review, Sensors, vol.17, issue.12, p.2918, 2017.
DOI : 10.1109/TNB.2015.2478481

L. C. Clark, C. Lyons, A. J. Bandodkar, S. Imani, R. Nunez-flores et al., ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY, Annals of the New York Academy of Sciences, vol.12, issue.2, pp.29-45, 1962.
DOI : 10.1161/01.CIR.24.5.1227

D. Bruen, C. Delaney, L. Florea, and D. Diamond, Glucose Sensing for Diabetes Monitoring: Recent Developments, Sensors, vol.25, issue.8, p.1866
DOI : 10.1021/acsami.5b10831

A. J. Bandodkar and J. Wang, Non-invasive wearable electrochemical sensors: a review, Trends in Biotechnology, vol.32, issue.7, pp.363-371
DOI : 10.1016/j.tibtech.2014.04.005

P. Santharaman, K. A. Venkatesh, K. Vairamani, A. R. Benjamin, N. K. Sethy et al., ARM-microcontroller based portable nitrite electrochemical analyzer using cytochrome c reductase biofunctionalized onto screen printed carbon electrode, Biosensors and Bioelectronics, vol.90, pp.410-417, 2017.
DOI : 10.1016/j.bios.2016.10.039

Y. Huang, J. Tan, L. J. Cui, Z. D. Zhou, S. F. Zhou et al., Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol, Biosensors and Bioelectronics, vol.102, pp.560-567, 2018.
DOI : 10.1016/j.bios.2017.11.037

S. Jakhar and C. S. Pundir, Preparation, characterization and application of urease nanoparticles for construction of an improved potentiometric urea biosensor, Biosensors and Bioelectronics, vol.100, pp.242-250, 2018.
DOI : 10.1016/j.bios.2017.09.005

U. Anik, Y. Tepeli, and M. F. Diouani, Fabrication of Electrochemical Model Influenza A Virus Biosensor Based on the Measurements of Neuroaminidase Enzyme Activity, Analytical Chemistry, vol.88, issue.12, pp.6151-6153, 2016.
DOI : 10.1021/acs.analchem.6b01720

URL : https://hal.archives-ouvertes.fr/pasteur-01405788

B. Sharma, A. K. Dangi, and P. Shukla, Contemporary enzyme based technologies for bioremediation: A review, Journal of Environmental Management, vol.210, pp.10-22, 2018.
DOI : 10.1016/j.jenvman.2017.12.075

C. S. Morrison, W. B. Armiger, D. R. Dodds, J. S. Dordick, and M. A. Koffas, Improved strategies for electrochemical 1,4-NAD(P)H 2 regeneration: A new era of bioreactors for industrial biocatalysis, Biotechnology Advances, vol.36, issue.1, pp.120-131, 2018.
DOI : 10.1016/j.biotechadv.2017.10.003

S. Bajracharya, S. Srikanth, G. Mohanakrishna, R. Zacharia, D. Strik et al., Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects, Journal of Power Sources, vol.356, pp.256-273, 2017.
DOI : 10.1016/j.jpowsour.2017.04.024

J. Hadj-said, M. E. Pandelia, C. Leger, V. Fourmond, and S. Dementin, The Carbon Monoxide Dehydrogenase from Desulfovibrio vulgaris, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1847, issue.12, pp.1574-1583, 2015.
DOI : 10.1016/j.bbabio.2015.08.002

URL : https://hal.archives-ouvertes.fr/hal-01430965

M. Gamella, A. Koushanpour, and E. Katz, Biofuel cells ??? Activation of micro- and macro-electronic devices, Bioelectrochemistry, vol.119, pp.33-42, 2018.
DOI : 10.1016/j.bioelechem.2017.09.002

I. Mazurenko, X. Wang, A. De-poulpiquet, and E. Lojou, enzymatic fuel cells: from proof-of-concept to powerful devices, Sustainable Energy & Fuels, vol.56, issue.7, pp.1475-1501, 2017.
DOI : 10.1002/anie.201612500

URL : https://hal.archives-ouvertes.fr/hal-01552073

I. Mazurenko, K. Monsalve, P. Infossi, M. T. Giudici-orticoni, F. Topin et al., enzymatic fuel cell, Energy & Environmental Science, vol.51, issue.9, pp.2017-1966
DOI : 10.1039/C5CC02166A

URL : https://hal.archives-ouvertes.fr/hal-01432198

M. Hoarau, S. Badieyan, and E. N. Marsh, Immobilized enzymes: understanding enzyme ??? surface interactions at the molecular level, Organic & Biomolecular Chemistry, vol.216, issue.45, pp.9539-9551
DOI : 10.1016/j.snb.2015.04.056

J. R. Winkler and H. B. Gray, Electron Flow through Metalloproteins, Chemical Reviews, vol.114, issue.7, pp.3369-3380
DOI : 10.1021/cr4004715

R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics, vol.811, issue.3, pp.265-322, 1985.
DOI : 10.1016/0304-4173(85)90014-X

C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, and P. L. Dutton, Nature of biological electron transfer, Nature, vol.355, issue.6363, pp.796-802, 1992.
DOI : 10.1038/355796a0

C. D. Bostick, S. Mukhopadhyay, I. Pecht, M. Sheves, D. Cahen et al., Protein bioelectronics: a review of what we do and do not know, Reports on Progress in Physics, vol.81, issue.2, pp.81-026601, 2018.
DOI : 10.1088/1361-6633/aa85f2

C. C. Page, C. C. Moser, X. X. Chen, and P. L. Dutton, Natural engineering principles of electron tunnelling in biological oxidation???reduction, Nature, vol.1057, issue.6757, pp.47-52, 1999.
DOI : 10.1016/S0005-2728(05)80107-0

M. Ozboyaci, D. B. Kokh, S. Corni, and R. C. Wade, Abstract, Quarterly Reviews of Biophysics, vol.42, issue.4, 2016.
DOI : 10.1002/anie.201000679

C. Léger and P. Bertrand, Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies, Chemical Reviews, vol.108, issue.7, pp.2379-2438, 2008.
DOI : 10.1021/cr0680742

M. Giudici-orticoni and N. Mano, How the intricate interactions between carbon nanotubes and two bilirubin oxidases control direct and mediated O 2 reduction, ACS Appl. Mater. Interfaces, vol.8, pp.23074-23085, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01363222

T. L. Ogorzalek, S. Wei, Y. Liu, Q. Wang, C. L. Brooks et al., Molecular-Level Insights into Orientation-Dependent Changes in the Thermal Stability of Enzymes Covalently Immobilized on Surfaces, Langmuir, vol.31, issue.22, pp.6145-6153, 2015.
DOI : 10.1021/acs.langmuir.5b01735

N. Mano and A. De-poulpiquet, Reduction in Enzymatic Biofuel Cells, Chemical Reviews, vol.118, issue.5, pp.2392-2468, 2018.
DOI : 10.1021/acs.chemrev.7b00220

URL : https://hal.archives-ouvertes.fr/hal-01731291

T. Sakurai and K. Kataoka, Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase, The Chemical Record, vol.36, issue.4, pp.220-229, 2007.
DOI : 10.1016/0167-4838(87)90305-0

E. I. Solomon, A. J. Augustine, and J. Yoon, O 2 Reduction to H 2 O by the multicopper oxidases, Dalton Trans, vol.30, pp.3921-3932, 2008.

J. C. Fontecilla-camps, A. Volbeda, C. Cavazza, and Y. Nicolet, Structure/Function Relationships of [NiFe]- and [FeFe]-Hydrogenases, Chemical Reviews, vol.107, issue.10, pp.4273-4303, 2007.
DOI : 10.1021/cr050195z

P. Wang, R. B. Best, and J. Blumberger, Transport in a [NiFe]-Hydrogenase, Journal of the American Chemical Society, vol.133, issue.10, pp.3548-3556, 2011.
DOI : 10.1021/ja109712q

R. Wilson and A. Turner, Glucose oxidase: an ideal enzyme, Biosensors and Bioelectronics, vol.7, issue.3, pp.165-185, 1992.
DOI : 10.1016/0956-5663(92)87013-F

H. Hecht, D. Schomburg, H. Kalisz, and R. Schmid, The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme, Biosensors and Bioelectronics, vol.8, issue.3-4, pp.197-203, 1993.
DOI : 10.1016/0956-5663(93)85033-K

A. Zebda, C. Gondran, A. Le-goff, M. Holzinger, P. Cinquin et al., Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes, Nature Communications, vol.272, issue.2, p.370, 2011.
DOI : 10.1016/S0008-6223(00)00155-X

URL : https://hal.archives-ouvertes.fr/hal-00685244

R. Ludwig, R. Ortiz, C. Schulz, W. Harreither, C. Sygmund et al., Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering, Analytical and Bioanalytical Chemistry, vol.56, issue.1???3, pp.3637-3658, 2013.
DOI : 10.1016/j.electacta.2011.03.107

F. Secundo, Conformational changes of enzymes upon immobilisation, Chemical Society Reviews, vol.33, issue.20, pp.6250-6261, 2013.
DOI : 10.1016/j.biomaterials.2012.07.009

Y. Sugimoto, Y. Kitazumi, O. Shirai, K. Nishikawa, Y. Higuchi et al., Electrostatic roles in electron transfer from [NiFe] hydrogenase to cytochrome c 3 from Desulfovibrio vulgaris Miyazaki F, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1865, issue.5, pp.1865-481, 2017.
DOI : 10.1016/j.bbapap.2017.02.009

S. Shimada, K. Shinzawa-itoh, J. Baba, S. Aoe, A. Shimada et al., ??oxidase reveals a novel protein???protein interaction mode, The EMBO Journal, vol.36, issue.3, pp.291-300
DOI : 10.15252/embj.201695021

J. Y. Kim, M. Kinoshita, S. Kume, H. Gt, T. Sugiki et al., Non-covalent forces tune the electron transfer complex between ferredoxin and sulfite reductase to optimize enzymatic activity, Biochemical Journal, vol.473, issue.21, pp.3837-3854, 2016.
DOI : 10.1042/BCJ20160658

W. Andralojc, Y. Hiruma, W. M. Liu, E. Ravera, M. Nojiri et al., Identification of productive and futile encounters in an electron transfer protein complex, Proc. Natl. Acad. Sci. USA 2017, pp.1840-1847

J. A. Cracknell, K. A. Vincent, and F. A. Armstrong, Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis, Chemical Reviews, vol.108, issue.7, pp.2439-2461, 2008.
DOI : 10.1021/cr0680639

C. E. Felder, J. Prilusky, I. Silman, and J. L. Sussman, A server and database for dipole moments of proteins, Nucleic Acids Research, vol.35, issue.Web Server, pp.512-521, 2007.
DOI : 10.1093/nar/gkm307

J. Topin, M. Rousset, S. Antonczak, and J. Golebiowski, Kinetics and thermodynamics of gas diffusion in a NiFe hydrogenase, Proteins: Structure, Function, and Bioinformatics, vol.27, issue.3, pp.677-682
DOI : 10.1016/S0360-3199(02)00072-1

C. Narth, N. Gillet, F. Cailliez, B. Lévy, and A. L. De-la-lande, Electron Transfer, Decoherence, and Protein Dynamics: Insights from Atomistic Simulations, Accounts of Chemical Research, vol.48, issue.4, pp.1090-1097
DOI : 10.1021/ar5002796

I. Mazurenko, A. De-poulpiquet, and E. Lojou, Recent developments in high surface area bioelectrodes for enzymatic fuel cells, Current Opinion in Electrochemistry, vol.5, issue.1, pp.74-84, 2017.
DOI : 10.1016/j.coelec.2017.07.001

URL : https://hal.archives-ouvertes.fr/hal-01564806

I. Mazurenko, R. Clément, D. Byrne-kodjabachian, A. De-poulpiquet, S. Tsujimura et al., Pore size effect of MgO-templated carbon on enzymatic H 2 oxidation by the hyperthermophilic hydrogenase from Aquifex aeolicus, Journal of Electroanalytical Chemistry, vol.812, pp.221-226, 2018.
DOI : 10.1016/j.jelechem.2017.12.041

P. A. Ash, J. Liu, N. Coutard, N. Heidary, M. Horch et al., and CO, The Journal of Physical Chemistry B, vol.119, issue.43, pp.13807-13815, 2015.
DOI : 10.1021/acs.jpcb.5b04164

URL : https://hal.archives-ouvertes.fr/hal-01179268

M. S. Thorum, C. A. Anderson, J. J. Hatch, A. S. Campbell, N. M. Marshall et al., Direct, Electrocatalytic Oxygen Reduction by Laccase on Anthracene-2-methanethiol-Modified Gold, The Journal of Physical Chemistry Letters, vol.1, issue.15, pp.2251-2254, 2010.
DOI : 10.1021/jz100745s

G. Feng, T. Niu, X. You, Z. Wan, Q. Kong et al., Studies on the effect of electrode pretreatment on the coverage of self-assembled monolayers of dodecanethiol on gold by electrochemical reductive desorption determination, The Analyst, vol.24, issue.551, pp.5058-5063, 2011.
DOI : 10.1016/j.bios.2008.08.034

D. Pankratov, J. Sotres, A. Barrantes, T. Arnebrant, and S. Shleev, Interfacial Behavior and Activity of Laccase and Bilirubin Oxidase on Bare Gold Surfaces, Langmuir, vol.30, issue.10, pp.2943-2951, 2014.
DOI : 10.1021/la402432q

S. Trasatti and O. Petrii, Real surface area measurements in electrochemistry, Pure and Applied Chemistry, vol.63, issue.5, pp.711-734, 1991.
DOI : 10.1351/pac199163050711

K. Monsalve, M. Roger, C. Gutierrez-sanchez, M. Ilbert, S. Nitsche et al., Hydrogen bioelectrooxidation on gold nanoparticle-based electrodes modified by Aquifex aeolicus hydrogenase: Application to hydrogen/oxygen enzymatic biofuel cells, Bioelectrochemistry, vol.106, pp.47-55, 2015.
DOI : 10.1016/j.bioelechem.2015.04.010

URL : https://hal.archives-ouvertes.fr/hal-01150369

M. Sezer, D. Millo, I. M. Weidinger, I. Zebger, and P. Hildebrandt, Analyzing the catalytic processes of immobilized redox enzymes by vibrational spectroscopies, IUBMB Life, vol.50, issue.6, pp.455-464, 2012.
DOI : 10.1002/anie.201006046

R. Buividas, N. Fahim, and J. Juodkazyt-?-e, Juodkazis, S. Novel method to determine the actual surface area of a laser-nanotextured sensor, pp.169-175

S. Fang, C. Hsu, T. Hsu, and Y. Liu, Surface roughness-correlated SERS effect on Au island-deposited substrate, Journal of Electroanalytical Chemistry, vol.741, pp.127-133, 2015.
DOI : 10.1016/j.jelechem.2015.01.028

R. Mendelsohn, G. Mao, and C. R. Flach, Infrared reflection???absorption spectroscopy: Principles and applications to lipid???protein interaction in Langmuir films, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.4, pp.788-800, 1798.
DOI : 10.1016/j.bbamem.2009.11.024

S. Dongmo, G. Wittstock, J. Christoffers, and I. Brand, In situ determination of potential-driven structural changes in a redox-active plumbagin polymer film on a glassy carbon electrode using PM IRRAS under electrochemical control, Electrochimica Acta, vol.255, pp.298-308, 2017.
DOI : 10.1016/j.electacta.2017.09.152

H. Heinz, R. Vaia, B. Farmer, and R. Naik, Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12???6 and 9???6 Lennard-Jones Potentials, The Journal of Physical Chemistry C, vol.112, issue.44, pp.17281-17290, 2008.
DOI : 10.1021/jp801931d

F. Iori, R. Di-felice, E. Molinari, S. Corni, and . Golp, GolP: An atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water, Journal of Computational Chemistry, vol.18, issue.9, pp.1465-1476, 2009.
DOI : 10.1002/jcc.21165

H. Heinz, T. Lin, R. Mishra, and F. S. Emami, Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field, Langmuir, vol.29, issue.6, pp.1754-1765
DOI : 10.1021/la3038846

K. Kubiak-ossowska, B. Jachimska, and P. A. Mulheran, How Negatively Charged Proteins Adsorb to Negatively Charged Surfaces: A Molecular Dynamics Study of BSA Adsorption on Silica, The Journal of Physical Chemistry B, vol.120, issue.40, pp.10463-10468, 2016.
DOI : 10.1021/acs.jpcb.6b07646

C. Mücksch and H. M. Urbassek, Molecular Dynamics Simulation of Free and Forced BSA Adsorption on a Hydrophobic Graphite Surface, Langmuir, vol.27, issue.21, pp.12938-12943, 2011.
DOI : 10.1021/la201972f

S. Trohalaki, R. Pachter, H. Luckarift, and G. Johnson, Immobilization of the Laccases from Trametes versicolor and Streptomyces coelicolor on Single-wall Carbon Nanotube Electrodes: A Molecular Dynamics Study, Fuel Cells, vol.23, issue.4, pp.656-664, 2012.
DOI : 10.1088/0957-4484/23/16/165703

H. Heinz, K. C. Jha, J. Luettmer-strathmann, B. L. Farmer, and R. R. Naik, Polarization at metal-biomolecular interfaces in solution, Journal of The Royal Society Interface, vol.99, issue.13, pp.220-232, 2011.
DOI : 10.1021/ja909823n

L. B. Wright, P. M. Rodger, S. Corni, and T. R. Walsh, GolP-CHARMM: First-Principles Based Force Fields for the Interaction of Proteins with Au(111) and Au(100), Journal of Chemical Theory and Computation, vol.9, issue.3, pp.1616-1630
DOI : 10.1021/ct301018m

Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu et al., Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins, Journal of Chemical Theory and Computation, vol.9, issue.9, pp.4046-4063
DOI : 10.1021/ct4003702

B. Akdim, R. Pachter, S. S. Kim, R. R. Naik, T. R. Walsh et al., Electronic Properties of a Graphene Device with Peptide Adsorption: Insight from Simulation, ACS Applied Materials & Interfaces, vol.5, issue.15, pp.7470-7477, 2013.
DOI : 10.1021/am401731c

S. Datta, L. R. Christena, and Y. R. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech, vol.92, issue.103, pp.1-9, 2013.
DOI : 10.1007/s00253-011-3534-6

N. R. Mohamad, N. H. Marzuki, N. A. Buang, F. Huyop, and R. A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnology & Biotechnological Equipment, vol.39, issue.1, pp.205-220
DOI : 10.1116/1.3613919

S. K. Arya, A. K. Prusty, S. Singh, P. R. Solanki, M. K. Pandey et al., Cholesterol biosensor based on N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane self-assembled monolayer, Analytical Biochemistry, vol.363, issue.2, pp.210-218, 2007.
DOI : 10.1016/j.ab.2007.01.029

A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chemical Reviews, vol.96, issue.4, pp.1533-1554, 1996.
DOI : 10.1021/cr9502357

B. Jin, G. Wang, D. Millo, P. Hildebrandt, and X. Xia, Immobilized on a Gold Electrode, The Journal of Physical Chemistry C, vol.116, issue.24, pp.13038-13044, 2012.
DOI : 10.1021/jp303740e

M. A. Bryant and R. M. Crooks, Determination of surface pKa values of surface-confined molecules derivatized with pH-sensitive pendant groups, Langmuir, vol.9, issue.2, pp.385-387, 1993.
DOI : 10.1021/la00026a005

W. A. Marmisollé, D. A. Capdevila, E. De-la-llave, F. J. Williams, and D. H. Murgida, Self-Assembled Monolayers of NH 2 -Terminated Thiolates: Order, pK a , and Specific Adsorption, Langmuir 2013, vol.29, pp.5351-5359

J. J. Gooding and S. Ciampi, The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies, Chemical Society Reviews, vol.26, issue.551, pp.2704-2718, 2011.
DOI : 10.1021/la903578r

L. H. Dubois and R. G. Nuzzo, Synthesis, Structure, and Properties of Model Organic Surfaces, Annual Review of Physical Chemistry, vol.43, issue.1, pp.437-463, 1992.
DOI : 10.1146/annurev.pc.43.100192.002253

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chemical Reviews, vol.105, issue.4, pp.1103-1170, 2005.
DOI : 10.1021/cr0300789

M. D. Porter, T. B. Bright, D. L. Allara, and C. Chidsey, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, Journal of the American Chemical Society, vol.109, issue.12, pp.3559-3568, 1987.
DOI : 10.1021/ja00246a011

D. Jambrec, F. Conzuelo, A. Estrada-vargas, and W. Schuhmann, Potential-Pulse-Assisted Formation of Thiol Monolayers within Minutes for Fast and Controlled Electrode Surface Modification, ChemElectroChem, vol.72, issue.9, pp.1484-1489, 2016.
DOI : 10.1021/ac991215y

D. Samanta and A. Sarkar, Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications, Chemical Society Reviews, vol.13, issue.285, pp.2567-2592, 2011.
DOI : 10.1021/la9610516

P. C. Mondal and C. Fontanesi, Electrochemistry of Metalloproteins Attached through Functional Self-Assembled Monolayers on Gold and Ferromagnetic Electrodes, ChemPhysChem, vol.534, issue.1, pp.60-66, 2018.
DOI : 10.1016/S0022-0728(02)01138-5

E. B. Ayd?n and M. K. Sezgintürk, Indium tin oxide (ITO): A promising material in biosensing technology, TrAC Trends in Analytical Chemistry, vol.97, pp.309-315, 2017.
DOI : 10.1016/j.trac.2017.09.021

S. K. Vashist, E. Lam, S. Hrapovic, K. B. Male, and J. H. Luong, Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics, Chemical Reviews, vol.114, issue.21, pp.11083-11130, 2014.
DOI : 10.1021/cr5000943

K. Yoshioka, D. Kato, T. Kamata, and O. Niwa, Cytochrome P450 Modified Polycrystalline Indium Tin Oxide Film as a Drug Metabolizing Electrochemical Biosensor with a Simple Configuration, Analytical Chemistry, vol.85, issue.21, pp.9996-9999, 2013.
DOI : 10.1021/ac402661w

J. F. Smalley, S. W. Feldberg, C. E. Chidsey, M. R. Linford, M. D. Newton et al., The Kinetics of Electron Transfer Through Ferrocene-Terminated Alkanethiol Monolayers on Gold, The Journal of Physical Chemistry, vol.99, issue.35, pp.13141-13149, 1995.
DOI : 10.1021/j100035a016

J. Xu, H. Li, and Y. Zhang, Relationship between electronic tunneling coefficient and electrode potential investigated by using self-assembled alkanethiol monolayers on gold electrodes, The Journal of Physical Chemistry, vol.97, issue.44, pp.11497-11500, 1993.
DOI : 10.1021/j100146a025

C. Mokrani, J. Fatisson, L. Guerente, and P. Labbe, Structural Characterization of (3-Mercaptopropyl)sulfonate Monolayer on Gold Surfaces, Langmuir, vol.21, issue.10, pp.4400-4409, 2005.
DOI : 10.1021/la047125s

B. Liu, A. J. Bard, M. V. Mirkin, and S. E. Creager, Electron Transfer at Self-Assembled Monolayers Measured by Scanning Electrochemical Microscopy, Journal of the American Chemical Society, vol.126, issue.5, pp.1485-1492, 2004.
DOI : 10.1021/ja038611p

Q. J. Chi, J. D. Zhang, J. E. Andersen, and J. Ulstrup, Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates, The Journal of Physical Chemistry B, vol.105, issue.20, pp.4669-4679, 2001.
DOI : 10.1021/jp0105589

M. W. Beulen, M. I. Kastenberg, F. C. Van-veggel, and D. N. Reinhoudt, Electrochemical Stability of Self-Assembled Monolayers on Gold, Langmuir, vol.14, issue.26, pp.7463-7467, 1998.
DOI : 10.1021/la981031z

S. Ovchinnikova and A. Medvedev, Desorption of octanethiol from gold electrode surface during its electrochemical cleaning, Russian Journal of Electrochemistry, vol.648, issue.3, pp.287-293, 2015.
DOI : 10.1016/j.jelechem.2008.07.001

J. Stettner and A. Winkler, Characterization of Alkanethiol Self-Assembled Monolayers on Gold by Thermal Desorption Spectroscopy, Langmuir, vol.26, issue.12, pp.9659-9665, 2010.
DOI : 10.1021/la100245a

I. I. Rze´znickarze´znicka, J. Lee, P. Maksymovych, and J. Yates, Nondissociative Chemisorption of Short Chain Alkanethiols on Au(111), The Journal of Physical Chemistry B, vol.109, issue.33, pp.15992-15996, 2005.
DOI : 10.1021/jp058124r

Y. Wang, J. G. Solano-canchaya, W. Dong, M. Alcami, H. F. Busnengo et al., Chain-Length and Temperature Dependence of Self-Assembled Monolayers of Alkylthiolates on Au(111) and Ag(111) Surfaces, The Journal of Physical Chemistry A, vol.118, issue.23, pp.4138-4146, 2014.
DOI : 10.1021/jp412285v

URL : https://hal.archives-ouvertes.fr/hal-01235932

L. Guo, L. Ma, Y. Zhang, X. Cheng, Y. Xu et al., Spectroscopic Identification of the Au???C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold, Langmuir, vol.32, issue.44, pp.11514-11519, 2016.
DOI : 10.1021/acs.langmuir.6b03206

A. Vacca, M. Mascia, S. Rizzardini, S. Palmas, and L. Mais, Coating of gold substrates with polyaniline through electrografting of aryl diazonium salts, Electrochimica Acta, vol.126, pp.81-89, 2014.
DOI : 10.1016/j.electacta.2013.08.187

P. Olejnik, B. Palys, A. Kowalczyk, and A. M. Nowicka, Orientation of Laccase on Charged Surfaces. Mediatorless Oxygen Reduction on Amino- and Carboxyl-Ended Ethylphenyl Groups, The Journal of Physical Chemistry C, vol.116, issue.49, pp.25911-25918, 2012.
DOI : 10.1021/jp3098654

D. Hetemi and J. Pinson, Surface functionalisation of polymers, Chemical Society Reviews, vol.291, issue.19, pp.5701-5713
DOI : 10.1007/s00396-012-2685-z

L. Santos, J. Ghilane, and J. C. Lacroix, Formation of Mixed Organic Layers by Stepwise Electrochemical Reduction of Diazonium Compounds, Journal of the American Chemical Society, vol.134, issue.12, pp.5476-5479
DOI : 10.1021/ja300224c

L. Santos, A. Mattiuzzi, I. Jabin, N. Vandencasteele, F. O. Reniers et al., One-Pot Electrografting of Mixed Monolayers with Controlled Composition, The Journal of Physical Chemistry C, vol.118, issue.29, pp.15919-15928, 2014.
DOI : 10.1021/jp5052003

URL : https://hal.archives-ouvertes.fr/hal-01151709

Y. R. Leroux and P. Hapiot, Nanostructured Monolayers on Carbon Substrates Prepared by Electrografting of Protected Aryldiazonium Salts, Chemistry of Materials, vol.25, issue.3, pp.489-495, 2013.
DOI : 10.1021/cm303844v

URL : https://hal.archives-ouvertes.fr/hal-00814516

X. Zhang, F. Rösicke, V. Syritski, G. Sun, J. Reut et al., Abstract, Zeitschrift f??r Physikalische Chemie, vol.228, issue.4-5, pp.557-573, 2014.
DOI : 10.1515/zpch-2014-0450

URL : https://hal.archives-ouvertes.fr/hal-01126336

S. Bouden and J. Pinson, Vautrin-Ul, C. Electrografting of diazonium salts: A kinetics study, Electrochem. Commun, vol.2017, issue.81, pp.120-123

M. T. Alam and J. J. Gooding, Modification of Carbon Electrode Surfaces, In Electrochemistry of Carbon Electrodes, vol.23, 2016.
DOI : 10.1002/elan.201000708

J. A. Cracknell, T. P. Mcnamara, E. D. Lowe, and C. Blanford, Bilirubin oxidase from Myrothecium verrucaria: X-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction, Dalton Transactions, vol.10, issue.25, pp.6668-6675, 2011.
DOI : 10.1007/s10008-006-0183-2

S. Wiebalck, J. Kozuch, E. Forbrig, C. C. Tzschucke, L. J. Jeuken et al., in Tethered Bilayer Lipid Membranes Using SEIRA Spectroscopy, The Journal of Physical Chemistry B, vol.120, issue.9, pp.2249-2256, 2016.
DOI : 10.1021/acs.jpcb.6b01435

J. C. Wu, C. H. Hutchings, M. J. Lindsay, C. J. Werner, and B. C. Bundy, Enhanced Enzyme Stability Through Site-Directed Covalent Immobilization, Journal of Biotechnology, vol.193, pp.83-90, 2015.
DOI : 10.1016/j.jbiotec.2014.10.039

N. Rueda, J. Santos, C. Ortiz, R. Torres, O. Barbosa et al., Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities, The Chemical Record, vol.524, issue.20, pp.1436-1455, 2016.
DOI : 10.1016/0005-2744(78)90114-6

Y. Hibino, S. Kawai, Y. Kitazumi, O. Shirai, and K. Kano, Mutation of heme c axial ligands in d-fructose dehydrogenase for investigation of electron transfer pathways and reduction of overpotential in direct electron transfer-type bioelectrocatalysis, Electrochemistry Communications, vol.67, pp.2016-2059
DOI : 10.1016/j.elecom.2016.03.013

V. Balland, C. Hureau, A. M. Cusano, Y. Liu, T. Tron et al., Oriented Immobilization of a Fully Active Monolayer of Histidine-Tagged Recombinant Laccase on Modified Gold Electrodes, Chemistry - A European Journal, vol.337, pp.7186-7192, 2008.
DOI : 10.1002/chem.200800368

S. Tsujimura, M. Asahi, M. Goda-tsutsumi, O. Shirai, K. Kano et al., Direct electron transfer to a metagenome-derived laccase fused to affinity tags near the electroactive copper site, Physical Chemistry Chemical Physics, vol.23, issue.47, pp.20585-20589, 2013.
DOI : 10.1016/j.bios.2007.11.004

Y. Li, J. Zhang, X. Huang, and T. Wang, Construction and direct electrochemistry of orientation controlled laccase electrode, Biochemical and Biophysical Research Communications, vol.446, issue.1, pp.201-205
DOI : 10.1016/j.bbrc.2014.02.084

A. Care, P. L. Bergquist, and A. Sunna, Solid-binding peptides: smart tools for nanobiotechnology, Trends in Biotechnology, vol.33, issue.5, pp.259-268, 2015.
DOI : 10.1016/j.tibtech.2015.02.005

K. Shiba, Natural and artificial peptide motifs: their origins and the application of motif-programming, Chem. Soc. Rev., vol.16, issue.1, pp.117-126, 2010.
DOI : 10.1093/proeng/gzg003

Y. Cui, S. N. Kim, S. E. Jones, L. L. Wissler, R. R. Naik et al., Chemical Functionalization of Graphene Enabled by Phage Displayed Peptides, Nano Letters, vol.10, issue.11, pp.4559-4565, 2010.
DOI : 10.1021/nl102564d

P. Q. Nguyen, Z. Botyanszki, P. K. Tay, and N. S. Joshi, Programmable biofilm-based materials from engineered curli nanofibres, Nature Communications, vol.32, p.4945, 2014.
DOI : 10.1002/(SICI)1096-9888(199706)32:6<593::AID-JMS511>3.0.CO;2-D

M. Hnilova, E. E. Oren, U. O. Seker, B. R. Wilson, S. Collino et al., Effect of Molecular Conformations on the Adsorption Behavior of Gold-Binding Peptides, Langmuir, vol.24, issue.21, pp.12440-12445, 2008.
DOI : 10.1021/la801468c

D. Khatayevich, M. Gungormus, H. Yazici, C. So, S. Cetinel et al., Biofunctionalization of materials for implants using engineered peptides, Acta Biomaterialia, vol.6, issue.12, pp.4634-4641, 2010.
DOI : 10.1016/j.actbio.2010.06.004

F. A. Al-lolage, M. Meneghello, S. Ma, R. Ludwig, and P. N. Bartlett, A Flexible Method for the Stable, Covalent Immobilization of Enzymes at Electrode Surfaces, ChemElectroChem, vol.7, issue.14, pp.1528-1534, 2017.
DOI : 10.1002/biot.201200049

N. M. Lalaoui, P. Rousselot-pailley, V. Robert, Y. Mekmouche, R. Villalonga et al., Direct Electron Transfer between a Site-Specific Pyrene-Modified Laccase and Carbon Nanotube/Gold Nanoparticle Supramolecular Assemblies for Bioelectrocatalytic Dioxygen Reduction, ACS Catalysis, vol.6, issue.3, pp.1894-1900, 2016.
DOI : 10.1021/acscatal.5b02442

URL : https://hal.archives-ouvertes.fr/hal-01644589

X. Gao, K. Ni, C. Zhao, Y. Ren, and D. Wei, Enhancement of the activity of enzyme immobilized on polydopamine-coated iron oxide nanoparticles by rational orientation of formate dehydrogenase, Journal of Biotechnology, vol.188, pp.36-41, 2014.
DOI : 10.1016/j.jbiotec.2014.07.443

D. Guan, Y. Kurra, W. Liu, and Z. Chen, A click chemistry approach to site-specific immobilization of a small laccase enables efficient direct electron transfer in a biocathode, Chemical Communications, vol.135, issue.13, pp.2522-2525, 2015.
DOI : 10.1021/ja310556n

O. Schlesinger, M. Pasi, R. Dandela, M. M. Meijler, and L. Alfonta, Electron transfer rate analysis of a site-specifically wired copper oxidase, Physical Chemistry Chemical Physics, vol.136, issue.9, pp.6159-6166, 2018.
DOI : 10.1021/ja500215j

D. L. Johnson and L. L. Martin, Controlling Protein Orientation at Interfaces Using Histidine Tags:?? An Alternative to Ni/NTA, Journal of the American Chemical Society, vol.127, issue.7, pp.2018-2019, 2005.
DOI : 10.1021/ja045084g

R. D. Milton and S. D. Minteer, Direct enzymatic bioelectrocatalysis: differentiating between myth and reality, Journal of The Royal Society Interface, vol.9, issue.131, 2017.
DOI : 10.1149/2.0111703jes

URL : http://rsif.royalsocietypublishing.org/content/14/131/20170253.full.pdf

R. A. Marcus, Electron transfer reactions in chemistry. Theory and experiment, Reviews of Modern Physics, vol.3, issue.3, p.599, 1993.
DOI : 10.1073/pnas.84.18.6438

E. Lojou, F. Cutruzzola, M. Tegoni, and P. Bianco, Electrochemical study of the intermolecular electron transfer to Pseudomonas aeruginosa cytochrome cd1 nitrite reductase, Electrochimica Acta, vol.48, issue.8, pp.1055-1064, 2003.
DOI : 10.1016/S0013-4686(02)00843-5

D. Santos, M. M. De-sousa, P. M. Goncalves, M. L. Krippahl, L. Moura et al., Electrochemical studies on small electron transfer proteins using membrane electrodes, Journal of Electroanalytical Chemistry, vol.541, pp.153-162, 2003.
DOI : 10.1016/S0022-0728(02)01427-4

H. A. Pedroso, C. M. Silveira, R. M. Almeida, A. Almeida, S. Besson et al., Electron transfer and docking between cytochrome cd 1 nitrite reductase and different redox partners ??? A comparative study, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1857, issue.9, pp.1412-1421, 2016.
DOI : 10.1016/j.bbabio.2016.04.279

R. Me?kys and S. Shleev, Oxygen electroreduction catalysed by laccase wired to gold nanoparticles via the trinuclear copper cluster, Energy Environ. Sci, vol.2017, issue.10, pp.498-502

A. Ciaccafava, P. Infossi, M. Ilbert, M. Guiral, S. Lecomte et al., Electrochemistry, AFM, and PM-IRRA Spectroscopy of Immobilized Hydrogenase: Role of a Hydrophobic Helix in Enzyme Orientation for Efficient H2 Oxidation, Angewandte Chemie International Edition, vol.70, issue.4, pp.953-956, 2012.
DOI : 10.1016/S0006-3495(96)79571-1

O. Rudiger, C. Gutierrez-sanchez, D. Olea, I. A. Pereira, M. Velez et al., Enzymatic Anodes for Hydrogen Fuel Cells based on Covalent Attachment of Ni-Fe Hydrogenases and Direct Electron Transfer to SAM-Modified Gold Electrodes, Electroanalysis, vol.73, issue.7-8, pp.776-783, 2010.
DOI : 10.1063/1.122751

C. Vaz-dominguez, M. Pita, A. L. De-lacey, S. Shleev, and A. Cuesta, Combined ATR-SEIRAS and EC-STM Study of the Immobilization of Laccase on Chemically Modified Au Electrodes, The Journal of Physical Chemistry C, vol.116, issue.31, pp.16532-16540, 2012.
DOI : 10.1021/jp303818p

C. Gutierrez-sanchez, A. Ciaccafava, P. Y. Blanchard, K. Monsalve, M. T. Giudici-orticoni et al., Bilirubin Oxidase Probed by Surface Plasmon Resonance, PMIRRAS, and Electrochemistry, Efficiency of Enzymatic O 2 Reduction by Myrothecium verrucaria Bilirubin Oxidase Probed by Surface Plasmon Resonance, PMIRRAS, and Electrochemistry, pp.5482-5492, 2016.
DOI : 10.1021/acscatal.6b01423

URL : https://hal.archives-ouvertes.fr/hal-01405977

T. Mcardle, T. P. Mcnamara, F. Fei, K. Singh, and C. Blanford, Optimizing the Mass-Specific Activity of Bilirubin Oxidase Adlayers through Combined Electrochemical Quartz Crystal Microbalance and Dual Polarization Interferometry Analyses, ACS Applied Materials & Interfaces, vol.7, issue.45, pp.25270-25280, 2015.
DOI : 10.1021/acsami.5b07290

M. Osawa, K. Ataka, K. Yoshii, and Y. Nishikawa, Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles, Applied Spectroscopy, vol.1385, issue.9, pp.1497-1502, 1993.
DOI : 10.1143/JJAP.8.559

X. Jiang, E. Zaitseva, M. Schmidt, F. Siebert, M. Engelhard et al., Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy, Proc. Natl. Acad. Sci, pp.12113-12117, 2008.
DOI : 10.1002/bip.20501

N. Heidary, M. Horch, D. Millo, J. Fritsch, O. Lenz et al., et al. Orientation-controlled electrocatalytic efficiency of an adsorbed oxygen-tolerant hydrogenase, PLoS ONE, vol.10, p.143101, 2015.

O. Gutiérrez-sanz, M. Marques, I. A. Pereira, A. L. De-lacey, W. Lubitz et al., Orientation and Function of a Membrane-Bound Enzyme Monitored by Electrochemical Surface-Enhanced Infrared Absorption Spectroscopy, The Journal of Physical Chemistry Letters, vol.4, issue.17, pp.2794-2798, 2013.
DOI : 10.1021/jz4013678

P. Olejnik, A. Paw?owska, and B. Pa?ys, Application of Polarization Modulated Infrared Reflection Absorption Spectroscopy for electrocatalytic activity studies of laccase adsorbed on modified gold electrodes, Electrochimica Acta, vol.110, pp.105-111, 2013.
DOI : 10.1016/j.electacta.2013.03.089

M. Bergkvist, J. Carlsson, and S. Oscarsson, A Method for Studying Protein Orientation with Atomic Force Microscopy Using Relative Protein Volumes, The Journal of Physical Chemistry B, vol.105, issue.10, pp.2062-2069, 2001.
DOI : 10.1021/jp003957x

C. Traunsteiner, S. Sek, V. Huber, C. Valero-vidal, and J. Kunze-liebhaeuser, Laccase immobilized on a mixed thiol monolayer on Au(111) ??? structure-dependent activity towards oxygen reduction, Electrochimica Acta, vol.213, pp.761-770, 2016.
DOI : 10.1016/j.electacta.2016.07.111

J. D. Gwyer, J. Zhang, J. N. Butt, and J. Ulstrupy, Voltammetry and In Situ Scanning Tunneling Microscopy of Cytochrome c Nitrite Reductase on Au(111) Electrodes, Biophysical Journal, vol.91, issue.10, pp.3897-3906, 2006.
DOI : 10.1529/biophysj.106.089755

A. V. Kartashov, G. Serafini, M. Dong, S. Shipovskov, I. Gazaryan et al., Long-range electron transfer in recombinant peroxidases anisotropically orientated on gold electrodes, Physical Chemistry Chemical Physics, vol.2, issue.34, pp.10098-10107, 2010.
DOI : 10.1063/1.3298136

C. Gutierrez-sanchez, D. Olea, M. Marques, V. M. Fernandez, I. A. Pereira et al., Oriented Immobilization of a Membrane-Bound Hydrogenase onto an Electrode for Direct Electron Transfer, Langmuir, vol.27, issue.10, pp.6449-6457, 2011.
DOI : 10.1021/la200141t

O. Gutierrez-sanz, P. Natale, I. Marquez, M. C. Marques, S. Zacarias et al., -Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration, Angewandte Chemie International Edition, vol.100, issue.21, pp.6216-6220, 2016.
DOI : 10.1016/0003-2697(79)90115-5

O. Gutierrez-sanz, D. Olea, M. Pita, A. P. Batista, A. Alonso et al., Reconstitution of Respiratory Complex I on a Biomimetic Membrane Supported on Gold Electrodes, Langmuir, vol.30, issue.29, pp.9007-9015, 2014.
DOI : 10.1021/la501825r

I. Matanovic, S. Babanova, M. S. Chavez, and P. Atanassov, Protein???Support Interactions for Rationally Designed Bilirubin Oxidase Based Cathode: A Computational Study, The Journal of Physical Chemistry B, vol.120, issue.15, pp.3634-3641, 2016.
DOI : 10.1021/acs.jpcb.6b01616

J. C. Ngai, P. Mak, and S. W. Siu, ProtPOS: a python package for the prediction of protein preferred orientation on a surface, Bioinformatics, vol.116, issue.16, pp.2537-2538, 2016.
DOI : 10.1021/la036345n

J. Liu, G. Yu, and J. Zhou, Ribonuclease A adsorption onto charged self-assembled monolayers: A multiscale simulation study, Chemical Engineering Science, vol.121, pp.331-339, 2015.
DOI : 10.1016/j.ces.2014.07.021

C. Kutzner, S. Pall, M. Fechner, A. Esztermann, B. L. De-groot et al., Best bang for your buck: GPU nodes for GROMACS biomolecular simulations, Journal of Computational Chemistry, vol.32, issue.26, 1990.
DOI : 10.1002/jcc.21773

R. Salomon-ferrer, D. A. Case, and R. C. Walker, An overview of the Amber biomolecular simulation package, Wiley Interdisciplinary Reviews: Computational Molecular Science, vol.120, issue.2, pp.198-210
DOI : 10.1021/ja981844+

J. W. Ponder and D. A. Case, Force Fields for Protein Simulations, Adv. Protein Chem, vol.66, pp.27-85, 2003.
DOI : 10.1016/S0065-3233(03)66002-X

K. Makrodimitris, D. L. Masica, E. T. Kim, and J. J. Gray, Structure Prediction of Protein???Solid Surface Interactions Reveals a Molecular Recognition Motif of Statherin for Hydroxyapatite, Journal of the American Chemical Society, vol.129, issue.44, pp.13713-13722, 2007.
DOI : 10.1021/ja074602v

Y. Xie, J. Zhou, and S. Jiang, Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces, The Journal of Chemical Physics, vol.21, issue.6, 2010.
DOI : 10.1016/j.jcis.2008.12.055

G. Brancolini, D. B. Kokh, L. Calzolai, R. C. Wade, and S. Corni, Docking of Ubiquitin to Gold Nanoparticles, ACS Nano, vol.6, issue.11, pp.9863-9878, 2012.
DOI : 10.1021/nn303444b

J. Zheng, L. Li, S. Chen, and S. Jiang, Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers, Langmuir, vol.20, issue.20, pp.8931-8938, 2004.
DOI : 10.1021/la036345n

Y. Li, T. L. Ogorzalek, S. Wei, X. Zhang, P. Yang et al., Effect of immobilization site on the orientation and activity of surface-tethered enzymes, Physical Chemistry Chemical Physics, vol.101, issue.2, pp.1021-1029, 2018.
DOI : 10.1073/pnas.0304825101

R. Cazelles, N. Lalaoui, T. Hartmann, S. Leimkühler, U. Wollenberger et al., Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET), Biosensors and Bioelectronics, vol.85, pp.90-95, 2016.
DOI : 10.1016/j.bios.2016.04.078

URL : https://hal.archives-ouvertes.fr/hal-01644728

T. Utesch, D. Millo, M. A. Castro, P. Hildebrandt, I. Zebger et al., Effect of the Protonation Degree of a Self-Assembled Monolayer on the Immobilization Dynamics of a [NiFe] Hydrogenase, Langmuir, vol.29, issue.2, pp.673-682
DOI : 10.1021/la303635q

F. Oteri, A. Ciaccafava, A. De-poulpiquet, M. Baaden, and E. Lojou, The weak, fluctuating, dipole moment of membrane-bound hydrogenase from Aquifex aeolicus accounts for its adaptability to charged electrodes, Phys. Chem. Chem. Phys., vol.21, issue.23, pp.11318-11322, 2014.
DOI : 10.1016/j.str.2012.11.010

URL : https://hal.archives-ouvertes.fr/hal-01493492

J. Liu, Y. Xie, C. Peng, G. Yu, and J. Zhou, Molecular Understanding of Laccase Adsorption on Charged Self-Assembled Monolayers, The Journal of Physical Chemistry B, vol.121, issue.47, pp.10610-10617, 2017.
DOI : 10.1021/acs.jpcb.7b08738

L. Peng, T. Utesch, A. Yarman, J. H. Jeoung, S. Steinborn et al., Surface-Tuned Electron Transfer and Electrocatalysis of Hexameric Tyrosine-Coordinated Heme Protein, Chemistry - A European Journal, vol.98, issue.20, pp.7596-7602, 2015.
DOI : 10.1073/pnas.181342398

T. Utesch, M. Sezer, I. M. Weidinger, and M. A. Mroginski, Adsorption of Sulfite Oxidase on Self-Assembled Monolayers from Molecular Dynamics Simulations, Langmuir, vol.28, issue.13, pp.5761-5769
DOI : 10.1021/la205055g

V. Climent, J. Zhang, E. P. Friis, L. H. Østergaard, and J. Ulstrup, Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes, The Journal of Physical Chemistry C, vol.116, issue.1, pp.1232-1243, 2011.
DOI : 10.1021/jp2086285

C. Madden, M. D. Vaughn, I. Díez-pérez, K. A. Brown, P. W. King et al., Catalytic Turnover of [FeFe]-Hydrogenase Based on Single-Molecule Imaging, Journal of the American Chemical Society, vol.134, issue.3, pp.1577-1582, 2011.
DOI : 10.1021/ja207461t

N. Xia, Y. Xing, G. Wang, Q. Feng, Q. Chen et al., Probing of EDC/NHSS-mediated covalent coupling reaction by the immobilization of electrochemically active biomolecules, Int. J. Electrochem. Sci, vol.8, pp.2459-2467, 2013.

/. Carbodiimide, C. Nhs-derivatization-of, and . Sams, Activation or byproduct formation? Langmuir, pp.4545-4550, 2014.

Q. Ran, R. Peng, C. Liang, S. Ye, Y. Xian et al., Covalent immobilization of horseradish peroxidase via click chemistry and its direct electrochemistry, Talanta, vol.83, issue.5, pp.1381-1385, 2011.
DOI : 10.1016/j.talanta.2010.11.024

K. Singh, T. Mcardle, P. R. Sullivan, and C. Blanford, Sources of activity loss in the fuel cell enzyme bilirubin oxidase, Energy & Environmental Science, vol.5, issue.8, pp.2460-2464
DOI : 10.1021/bm0345256

L. Zanetti-polzi, I. Daidone, C. A. Bortolotti, S. Corni, S. Cronin et al., Surface Packing Determines the Redox Potential Shift of Cytochrome c Adsorbed on Gold, Journal of the American Chemical Society, vol.136, issue.37, pp.12929-12937
DOI : 10.1021/ja505251a

T. Kakiuchi, M. Iida, N. Gon, D. Hobara, S. Imabayashi et al., Miscibility of Adsorbed 1-Undecanethiol and 11-Mercaptoundecanoic Acid Species in Binary Self-Assembled Monolayers on Au(111), Langmuir, vol.17, issue.5, pp.1599-1603, 2001.
DOI : 10.1021/la0014757

R. K. Smith, S. M. Reed, P. A. Lewis, J. D. Monnell, R. S. Clegg et al., Phase Separation within a Binary Self-Assembled Monolayer on Au{111} Driven by an Amide-Containing Alkanethiol, The Journal of Physical Chemistry B, vol.105, issue.6, pp.1119-1122, 2001.
DOI : 10.1021/jp0035129

T. E. Benavidez, D. Torrente, M. Marucho, and C. Garcia, Adsorption of Soft and Hard Proteins onto OTCEs under the Influence of an External Electric Field, Langmuir, vol.31, issue.8, pp.2455-2462, 2015.
DOI : 10.1021/la504890v

Y. Sugimoto, Y. Kitazumi, S. Tsujimura, O. Shirai, M. Yamamoto et al., Electrostatic interaction between an enzyme and electrodes in the electric double layer examined in a view of direct electron transfer-type bioelectrocatalysis, Biosensors and Bioelectronics, vol.63, pp.138-144, 2015.
DOI : 10.1016/j.bios.2014.07.025

Y. Sugimoto, Y. Kitazumi, O. Shirai, M. Yamamoto, and K. Kano, Role of 2-mercaptoethanol in direct electron transfer-type bioelectrocatalysis of fructose dehydrogenase at Au electrodes, Electrochimica Acta, vol.170, pp.242-247, 2015.
DOI : 10.1016/j.electacta.2015.04.164

F. Lopez, T. Siepenkoetter, X. Xiao, E. Magner, and W. Schuhmann, Salaj-Kosla, U. Potential pulse-assisted immobilization of Myrothecium verrucaria bilirubin oxidase at planar and nanoporous gold electrodes

D. Millo, A. Ranieri, P. Gross, H. K. Ly, M. Borsari et al., Immobilized on Smooth and Roughened Silver and Gold Surfaces Chemically Modified with 11-Mercaptounodecanoic Acid, The Journal of Physical Chemistry C, vol.113, issue.7, pp.2861-2866, 2009.
DOI : 10.1021/jp807855y

L. Rivas, C. M. Soares, A. M. Baptista, J. Simaan, R. E. Di-paolo et al., Electric-Field-Induced Redox Potential Shifts of Tetraheme Cytochromes c 3 Immobilized on Self-Assembled Monolayers: Surface-Enhanced Resonance Raman Spectroscopy and Simulation Studies, Biophysical Journal, vol.88, issue.6, pp.4188-4199, 2005.
DOI : 10.1529/biophysj.104.057232

D. Petrey and B. Honig, Structural Bioinformatics of the Interactome, Annual Review of Biophysics, vol.43, issue.1, pp.193-210
DOI : 10.1146/annurev-biophys-051013-022726

K. Monsalve, I. Mazurenko, C. Gutierrez-sanchez, M. Ilbert, P. Infossi et al., Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases, ChemElectroChem, vol.46, issue.12, pp.2179-2188, 2016.
DOI : 10.1039/c0cc00911c

URL : https://hal.archives-ouvertes.fr/hal-01406080

Z. Salamon, J. Fitch, M. Cai, S. Tumati, E. Navratilova et al., Plasmon???waveguide resonance studies of ligand binding to integral proteins in membrane fragments derived from bacterial and mammalian cells, Analytical Biochemistry, vol.387, issue.1, pp.95-101, 2009.
DOI : 10.1016/j.ab.2009.01.019

L. Bouffier and T. Doneux, Coupling electrochemistry with in situ fluorescence (confocal) microscopy, Current Opinion in Electrochemistry, vol.6, issue.1, pp.31-37
DOI : 10.1016/j.coelec.2017.06.015

C. Gutierrez-sanchez, M. Pita, C. Vaz-dominguez, S. Shleev, and A. L. De-lacey, Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes, Journal of the American Chemical Society, vol.134, issue.41, pp.17212-17220, 2012.
DOI : 10.1021/ja307308j

Y. Sugimoto, Y. Kitazumi, O. Shirai, and K. Kano, Effects of Mesoporous Structures on Direct Electron Transfer-Type Bioelectrocatalysis: Facts and Simulation on a Three-Dimensional Model of Random Orientation of Enzymes, Electrochemistry, vol.85, issue.2, pp.82-87, 2017.
DOI : 10.5796/electrochemistry.85.82