J. Dénarié, F. Debellé, and J. Promé, Rhizobium Lipo-Chitooligosaccharide Nodulation Factors: Signaling Molecules Mediating Recognition and Morphogenesis, Annual Review of Biochemistry, vol.65, issue.1, pp.503-538, 1996.
DOI : 10.1146/annurev.bi.65.070196.002443

F. Debellé, L. Moulin, B. Mangin, J. Dénarié, and C. Boivin, Nod genes and nod signals and the evolution of the Rhizobium legume symbiosis, Acta Biochim Pol, vol.48, pp.359-65, 2001.

L. Moulin, A. Munive, B. Dreyfus, and C. Boivin-masson, Nodulation of legumes by members of the ??-subclass of Proteobacteria, Nature, vol.84, issue.6840, pp.948-50, 2001.
DOI : 10.1016/0378-1119(89)90522-2

P. Gyaneshwar, A. Hirsch, L. Moulin, W. Chen, G. Elliott et al., Legume-Nodulating Betaproteobacteria: Diversity, Host Range, and Future Prospects, Molecular Plant-Microbe Interactions, vol.24, issue.11, pp.1276-88, 2011.
DOI : 10.1094/MPMI-06-11-0172

L. Moulin, E. James, A. Klonowska, S. Miana-de-faria, and M. Simon, Phylogeny, Diversity, Geographical Distribution, and Host Range of Legume-Nodulating Betaproteobacteria: What Is the Role of Plant Taxonomy?, Biol. nitrogen Fixat. Chichester, vol.194, pp.177-190, 2015.
DOI : 10.1128/JB.00657-12

B. Lemaire, O. Dlodlo, S. Chimphango, C. Stirton, B. Schrire et al., Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa), FEMS Microbiology Ecology, vol.60, issue.2, pp.1-17, 2015.
DOI : 10.1099/ijs.0.019356-0

B. Lemaire, J. Van-cauwenberghe, B. Verstraete, S. Chimphango, C. Stirton et al., Characterization of the papilionoid??? Burkholderia interaction in the Fynbos biome: The diversity and distribution of beta-rhizobia nodulating Podalyria calyptrata (Fabaceae, Podalyrieae), Systematic and Applied Microbiology, vol.39, issue.1, pp.41-49, 2016.
DOI : 10.1016/j.syapm.2015.09.006

A. Sawana, M. Adeolu, and R. Gupta, Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species, Frontiers in Genetics, vol.7, issue.6, p.429, 2014.
DOI : 10.4137/EBO.S7510

R. Mishra, P. Tisseyre, R. Melkonian, C. Chaintreuil, L. Miché et al., Genetic diversity of Mimosa pudica rhizobial symbionts in soils of French Guiana: investigating the origin and diversity of Burkholderia phymatum and other beta-rhizobia, FEMS Microbiology Ecology, vol.49, issue.2, pp.487-503, 2012.
DOI : 10.1099/00207713-49-4-1479

URL : https://hal.archives-ouvertes.fr/hal-01791869

W. Chen, E. James, T. Coenye, J. Chou, E. Barrios et al., Burkholderia mimosarum sp. nov., isolated from root nodules of Mimosa spp. from Taiwan and South America, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.56, issue.8, pp.1847-51, 2006.
DOI : 10.1099/ijs.0.64325-0

W. Chen, S. De-faria, E. James, G. Elliott, K. Lin et al., Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.57, issue.5, pp.1055-1064, 2007.
DOI : 10.1099/ijs.0.64873-0

R. Dall-'agnol, C. Bournaud, S. De-faria, G. Béna, L. Moulin et al., Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica), FEMS Microbiol Ecol, vol.93, 2017.

W. Chen, S. De-faria, J. Chou, E. James, G. Elliott et al., Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.56, issue.2, pp.2174-2183, 2008.
DOI : 10.1099/ijs.0.63968-0

S. Sheu, J. Chou, C. Bontemps, G. Elliott, E. Gross et al., Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.50, issue.2, pp.2272-2280, 2012.
DOI : 10.1099/00207713-50-2-743

S. Sheu, J. Chou, C. Bontemps, G. Elliott, E. Gross et al., Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp., INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.50, issue.2, pp.435-476, 2013.
DOI : 10.1099/00207713-50-2-743

URL : https://hal.archives-ouvertes.fr/hal-01477184

C. Bournaud, L. Moulin, M. Cnockaert, S. De-faria, Y. Prin et al., Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha

C. Barrett and M. Parker, Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. Nodule Bacteria on two Mimosa spp. in Costa Rica, Applied and Environmental Microbiology, vol.72, issue.2, pp.1198-206, 2006.
DOI : 10.1128/AEM.72.2.1198-1206.2006

URL : http://aem.asm.org/content/72/2/1198.full.pdf

C. Andam, S. Mondo, and M. Parker, Monophyly of nodA and nifH Genes across Texan and Costa Rican Populations of Cupriavidus Nodule Symbionts, Applied and Environmental Microbiology, vol.73, issue.14
DOI : 10.1128/AEM.00160-07

URL : http://aem.asm.org/content/73/14/4686.full.pdf

X. Liu, S. Wei, F. Wang, E. James, X. Guo et al., Burkholderia and Cupriavidus spp. are the preferred symbionts of Mimosa spp. in Southern China, FEMS Microbiology Ecology, vol.44, issue.2, pp.417-443, 2012.
DOI : 10.1099/00207713-49-4-1479

W. Chen, S. Laevens, T. Lee, T. Coenye, D. Vos et al., Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.51, issue.5, pp.1729-1764, 2001.
DOI : 10.1099/00207713-51-5-1729

A. Andrus, C. Andam, and M. Parker, American origin of Cupriavidus bacteria associated with invasive Mimosa legumes in the Philippines, FEMS Microbiology Ecology, vol.50, issue.3, pp.747-50, 2012.
DOI : 10.1139/w04-020

A. Klonowska, C. Chaintreuil, P. Tisseyre, L. Miché, R. Melkonian et al., Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils, FEMS Microbiology Ecology, vol.13, issue.3, pp.618-653, 2012.
DOI : 10.1111/j.1462-2920.2010.02343.x

URL : https://hal.archives-ouvertes.fr/hal-01506267

H. Gehlot, N. Tak, M. Kaushik, S. Mitra, W. Chen et al., An invasive Mimosa in India does not adopt the symbionts of its native relatives, Annals of Botany, vol.97, issue.1, pp.179-96, 2013.
DOI : 10.1007/1-4020-3054-1_14

R. Platero, E. James, C. Rios, A. Iriarte, L. Sandes et al., ABSTRACT, Applied and Environmental Microbiology, vol.82, issue.11, pp.3150-3164, 2016.
DOI : 10.1128/AEM.04142-15

C. Taulé, M. Zabaleta, C. Mareque, R. Platero, L. Sanjurjo et al., ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.6, pp.1692-700, 2012.
DOI : 10.1128/AEM.06215-11

S. Turner and J. Young, The Glutamine Synthetases of Rhizobia: Phylogenetics and Evolutionary Implications, Molecular Biology and Evolution, vol.17, issue.2, pp.309-328, 2000.
DOI : 10.1046/j.1365-2958.1997.2681633.x

URL : https://academic.oup.com/mbe/article-pdf/17/2/309/6395782/mbev_17_02_0309.pdf

A. Hirsch, M. Lum, and J. Downie, What Makes the Rhizobia-Legume Symbiosis So Special?, PLANT PHYSIOLOGY, vol.127, issue.4, pp.1484-92, 2001.
DOI : 10.1104/pp.010866

URL : http://www.plantphysiol.org/content/127/4/1484.full.pdf

L. Moulin, G. Béna, C. Boivin-masson, and T. St?pkowski, Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus, Molecular Phylogenetics and Evolution, vol.30, issue.3, pp.720-752, 2004.
DOI : 10.1016/S1055-7903(03)00255-0

C. Bontemps, G. Elliott, M. Simon, D. R. Júnior, F. Gross et al., species are ancient symbionts of legumes, Molecular Ecology, vol.27, issue.1, pp.44-52, 2010.
DOI : 10.1128/jb.173.2.697-703.1991

C. Amadou, G. Pascal, S. Mangenot, M. Glew, C. Bontemps et al., Genome sequence of the ??-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia, Genome Research, vol.18, issue.9, pp.1472-83, 2008.
DOI : 10.1101/gr.076448.108

C. Barrett and M. Parker, Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama, Systematic and Applied Microbiology, vol.28, issue.1, pp.57-65, 2005.
DOI : 10.1016/j.syapm.2004.09.002

W. Chen, L. Moulin, C. Bontemps, P. Vandamme, G. Béna et al., Legume Symbiotic Nitrogen Fixation by ??-Proteobacteria Is Widespread in Nature, Journal of Bacteriology, vol.185, issue.24, pp.7266-72, 2003.
DOI : 10.1128/JB.185.24.7266-7272.2003

URL : https://hal.archives-ouvertes.fr/hal-01655696

G. Elliott, J. Chou, W. Chen, G. Bloemberg, C. Bontemps et al., , particularly under N-limited conditions, Environmental Microbiology, vol.27, issue.4, pp.762-78, 2009.
DOI : 10.1094/MPMI-8-0800

R. Melkonian, L. Moulin, G. Béna, P. Tisseyre, C. Chaintreuil et al., can be explained by the competitiveness of its symbionts and by the host genotype, Environmental Microbiology, vol.44, issue.Part 4, pp.2099-111, 2014.
DOI : 10.1099/00207713-51-2-623

A. López-lópez, M. Rogel-hernández, I. Barois, A. Ortiz-ceballos, J. Martínez et al., Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.18, issue.5, pp.2264-71, 2012.
DOI : 10.1101/gr.074492.107

A. Baraúna, L. Rouws, J. Simoes-araujo, D. R. Junior, F. Iannetta et al., Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil, Int J Syst Evol Microbiol, vol.66, pp.4118-4142, 2016.

C. Masson-boivin, E. Giraud, X. Perret, and J. Batut, Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?, Trends in Microbiology, vol.17, issue.10, pp.458-66, 2009.
DOI : 10.1016/j.tim.2009.07.004

W. Malek, The role of motility in the efficiency of nodulation by Rhizobium meliloti, Archives of Microbiology, vol.1, issue.1, pp.26-34, 1992.
DOI : 10.1007/BF00249061

A. Lodeiro, S. López-garcía, T. Vázquez, and G. Favelukes, by its pretreatment with soybean seed lectin, FEMS Microbiology Letters, vol.65, issue.2, pp.177-84, 2000.
DOI : 10.1099/00221287-16-2-374

A. Lagares, G. Caetano-anollés, K. Niehaus, J. Lorenzen, H. Ljunggren et al., A Rhizobium meliloti lipopolysaccharide mutant altered in competitiveness for nodulation of alfalfa., Journal of Bacteriology, vol.174, issue.18, pp.5941-52, 1992.
DOI : 10.1128/jb.174.18.5941-5952.1992

URL : http://jb.asm.org/content/174/18/5941.full.pdf

X. Perret, C. Staehelin, and W. Broughton, Molecular Basis of Symbiotic Promiscuity, Microbiology and Molecular Biology Reviews, vol.64, issue.1, pp.180-201, 2000.
DOI : 10.1128/MMBR.64.1.180-201.2000

URL : http://mmbr.asm.org/content/64/1/180.full.pdf

F. Ampe, E. Kiss, F. Sabourdy, and J. Batut, Transcriptome analysis of Sinorhizobium meliloti during symbiosis, Genome Biology, vol.4, issue.2, p.15, 2003.
DOI : 10.1186/gb-2003-4-2-r15

G. Mark, J. Dow, P. Kiely, H. Higgins, J. Haynes et al., Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions, Proceedings of the National Academy of Sciences, vol.63, issue.11, pp.17454-17463, 2005.
DOI : 10.1073/pnas.0407269101

URL : http://www.pnas.org/content/102/48/17454.full.pdf

B. Fan, L. Carvalhais, A. Becker, D. Fedoseyenko, N. Von-wirén et al., Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates, BMC Microbiology, vol.12, issue.1, p.116, 2012.
DOI : 10.1093/nar/29.9.e45

URL : https://bmcmicrobiol.biomedcentral.com/track/pdf/10.1186/1471-2180-12-116?site=bmcmicrobiol.biomedcentral.com

T. Shidore, T. Dinse, J. Öhrlein, A. Becker, and B. Reinhold-hurek, sp. strain BH72, Environmental Microbiology, vol.30, issue.10, pp.2775-87, 2012.
DOI : 10.1093/nar/30.10.e48

L. Oliveira, F. Marcelino, F. Barcellos, E. Rodrigues, M. Megías et al., The nodC, nodG, and glgX genes of Rhizobium tropici strain PRF 81, Functional & Integrative Genomics, vol.15, issue.3, pp.425-456, 2010.
DOI : 10.1128/jb.175.2.438-447.1993

X. Perret, C. Freiberg, A. Rosenthal, W. Broughton, and R. Fellay, High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234, Molecular Microbiology, vol.172, issue.2, pp.415-440, 1999.
DOI : 10.1046/j.1365-2958.1998.00920.x

V. Ramachandran, A. East, R. Karunakaran, J. Downie, and P. Poole, Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics, Genome Biology, vol.12, issue.10, p.106, 2011.
DOI : 10.1677/jme.0.0290023

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2011-12-10-r106?site=genomebiology.biomedcentral.com

P. Janssen, R. Van-houdt, H. Moors, P. Monsieurs, N. Morin et al., The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments, PLoS ONE, vol.5, issue.5, 2010.
DOI : 10.1371/journal.pone.0010433.s019

S. Monchy, M. Benotmane, P. Janssen, T. Vallaeys, S. Taghavi et al., Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans Are Specialized in the Maximal Viable Response to Heavy Metals, Journal of Bacteriology, vol.189, issue.20, pp.7417-7442, 2007.
DOI : 10.1128/JB.00375-07

P. Rainey, Adaptation of Pseudomonas fluorescens to the plant rhizosphere, Environmental Microbiology, vol.8, issue.3, pp.243-57, 1999.
DOI : 10.1046/j.1365-2958.1997.4661829.x

X. Zhang and P. Rainey, SBW25 in Copper Homeostasis and Plant Colonization, Molecular Plant-Microbe Interactions, vol.20, issue.5, pp.581-589, 2007.
DOI : 10.1094/MPMI-20-5-0581

J. Bains, L. Kaufman, B. Farnell, and M. Boulanger, A Product Analog Bound Form of 3-Oxoadipate-enol-Lactonase (PcaD) Reveals a Multifunctional Role for the Divergent Cap Domain, Journal of Molecular Biology, vol.406, issue.5, pp.649-58, 2011.
DOI : 10.1016/j.jmb.2011.01.007

P. Garcia-fraile, J. Seaman, R. Karunakaran, A. Edwards, P. Poole et al., Arabinose and protocatechuate catabolism genes are important for growth of Rhizobium leguminosarum biovar viciae in the pea rhizosphere, Plant and Soil, vol.7, issue.1-2, pp.251-64, 2015.
DOI : 10.1186/gb-2006-7-4-r34

URL : https://link.springer.com/content/pdf/10.1007%2Fs11104-015-2389-5.pdf

M. Rohmer, M. Knani, P. Simonin, B. Sutter, and H. Sahm, Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate, Biochemical Journal, vol.295, issue.2, pp.517-541, 1993.
DOI : 10.1042/bj2950517

URL : http://www.biochemj.org/content/ppbiochemj/295/2/517.full.pdf

H. Ding, C. Yip, B. Geddes, I. Oresnik, and M. Hynes, Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation, Microbiology, vol.69, issue.4, pp.1369-78, 2012.
DOI : 10.1626/jcs.69.380

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/158/5/1369_mic057281.pdf?itemId=/content/journal/micro/10.1099/mic.0.057281-0&mimeType=pdf&isFastTrackArticle=

W. Chen, J. Prell, E. James, D. Sheu, and S. Sheu, Biosynthesis of branched-chain amino acids is essential for effective symbioses between betarhizobia and Mimosa pudica, Microbiology, vol.72, issue.3, pp.1758-66, 2012.
DOI : 10.1128/AEM.72.3.2290-2293.2006

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/158/7/1758_mic058370.pdf?itemId=/content/journal/micro/10.1099/mic.0.058370-0&mimeType=pdf&isFastTrackArticle=

Y. Anraku and R. Gennis, The aerobic respiratory chain of Escherichia coli, Trends in Biochemical Sciences, vol.12, pp.262-268, 1987.
DOI : 10.1016/0968-0004(87)90131-9

N. Tucker, M. Hicks, T. Clarke, J. Crack, G. Chandra et al., The Transcriptional Repressor Protein NsrR Senses Nitric Oxide Directly via a [2Fe-2S] Cluster, PLoS ONE, vol.283, issue.11, p.3623, 2008.
DOI : 10.1371/journal.pone.0003623.g003

URL : https://doi.org/10.1371/journal.pone.0003623

J. Del-giudice, Y. Cam, I. Damiani, F. Fung-chat, E. Meilhoc et al., symbiosis, New Phytologist, vol.78, issue.2, pp.405-422, 2011.
DOI : 10.1111/j.1365-2958.2010.07376.x

M. Espinosa-urgel, A. Salido, and J. Ramos, Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds, Journal of Bacteriology, vol.182, issue.9, pp.2363-2372, 2000.
DOI : 10.1128/JB.182.9.2363-2369.2000

J. Martinez, M. Sánchez, L. Martínez-solano, A. Hernandez, L. Garmendia et al., Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems, FEMS Microbiology Reviews, vol.179, issue.2, pp.430-479, 2009.
DOI : 10.1046/j.1365-2958.2000.01926.x

URL : https://academic.oup.com/femsre/article-pdf/33/2/430/18142134/33-2-430.pdf

R. González-pasayo and E. Martínez-romero, CFN42, Molecular Plant-Microbe Interactions, vol.13, issue.5, pp.572-579, 2000.
DOI : 10.1094/MPMI.2000.13.5.572

A. Lindemann, M. Koch, G. Pessi, A. Müller, S. Balsiger et al., Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum, FEMS Microbiology Letters, vol.271, issue.2, pp.184-91, 2010.
DOI : 10.1007/978-3-642-69338-0_11

URL : https://academic.oup.com/femsle/article-pdf/312/2/184/19645696/312-2-184.pdf

P. Kohler, E. Choong, and S. Rossbach, The RpiR-Like Repressor IolR Regulates Inositol Catabolism in Sinorhizobium meliloti, Journal of Bacteriology, vol.193, issue.19, pp.5155-63, 2011.
DOI : 10.1128/JB.05371-11

URL : http://jb.asm.org/content/193/19/5155.full.pdf

P. Kohler, J. Zheng, E. Schoffers, and S. Rossbach, Inositol Catabolism, a Key Pathway in Sinorhizobium meliloti for Competitive Host Nodulation, Applied and Environmental Microbiology, vol.76, issue.24, pp.7972-80, 2010.
DOI : 10.1128/AEM.01972-10

URL : http://aem.asm.org/content/76/24/7972.full.pdf

M. Summers, M. Denton, and T. Mcdermott, Genes coding for phosphotransacetylase and acetate kinase in Sinorhizobium meliloti are in an operon that is inducible by phosphate stress and controlled by phoB, J Bacteriol, vol.181, pp.2217-2241, 1999.

J. Prell, A. Bourdès, R. Karunakaran, M. Lopez-gomez, and P. Poole, Pathway of ??-Aminobutyrate Metabolism in Rhizobium leguminosarum 3841 and Its Role in Symbiosis, Journal of Bacteriology, vol.191, issue.7, pp.2177-86, 2009.
DOI : 10.1128/JB.01714-08

T. Yasuta, S. Okazaki, H. Mitsui, K. Yuhashi, H. Ezura et al., DNA Sequence and Mutational Analysis of Rhizobitoxine Biosynthesis Genes in Bradyrhizobium elkanii, Applied and Environmental Microbiology, vol.67, issue.11, pp.4999-5009, 2001.
DOI : 10.1128/AEM.67.11.4999-5009.2001

URL : http://aem.asm.org/content/67/11/4999.full.pdf

S. Okazaki, M. Sugawara, and K. Minamisawa, Bradyrhizobium elkanii rtxC Gene Is Required for Expression of Symbiotic Phenotypes in the Final Step of Rhizobitoxine Biosynthesis, Applied and Environmental Microbiology, vol.70, issue.1, pp.535-576, 2004.
DOI : 10.1128/AEM.70.1.535-541.2004

M. Sugawara, S. Okazaki, N. Nukui, H. Ezura, H. Mitsui et al., Rhizobitoxine modulates plant???microbe interactions by ethylene inhibition, Biotechnology Advances, vol.24, issue.4, pp.382-390, 2006.
DOI : 10.1016/j.biotechadv.2006.01.004

W. Ma, T. Charles, and B. Glick, Expression of an Exogenous 1-Aminocyclopropane-1-Carboxylate Deaminase Gene in Sinorhizobium meliloti Increases Its Ability To Nodulate Alfalfa, Applied and Environmental Microbiology, vol.70, issue.10, pp.5891-5898, 2004.
DOI : 10.1128/AEM.70.10.5891-5897.2004

M. Theunis, H. Kobayashi, W. Broughton, and P. E. Flavonoids, sp. strain NGR234, Molecular Plant-Microbe Interactions, vol.17, issue.10, pp.1153-61, 2004.
DOI : 10.1094/MPMI.2004.17.10.1153

S. Camerini, B. Senatore, E. Lonardo, E. Imperlini, C. Bianco et al., Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development, Archives of Microbiology, vol.82, issue.3, pp.67-77, 2008.
DOI : 10.1007/978-94-015-7934-6_33

W. Park, Y. , T. Lim, S. Dae, and Y. , Cloning and characterization of a CMCase gene, celB, of Erwinia carotovora subsp. carotovora LY34 and its comparison to celA, Mol Cells, vol.8, pp.280-285, 1998.

M. Robledo, J. Jiménez-zurdo, E. Velázquez, M. Trujillo, J. Zurdo-piñeiro et al., Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots, Proceedings of the National Academy of Sciences, vol.61, issue.5, pp.7064-7073, 2008.
DOI : 10.1016/0003-2697(81)90783-1

URL : http://www.pnas.org/content/105/19/7064.full.pdf

M. Robledo, J. Jiménez-zurdo, M. Soto, E. Velázquez, F. Dazzo et al., Development of Functional Symbiotic White Clover Root Hairs and Nodules Requires Tightly Regulated Production of Rhizobial Cellulase CelC2, Molecular Plant-Microbe Interactions, vol.24, issue.7, pp.798-807, 2011.
DOI : 10.1094/MPMI-10-10-0249

A. Angus, C. Agapakis, S. Fong, S. Yerrapragada, P. Estrada-de-los-santos et al., Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis, PLoS ONE, vol.193, issue.1, p.83779, 2014.
DOI : 10.1371/journal.pone.0083779.s002

URL : https://doi.org/10.1371/journal.pone.0083779

B. Mitter, A. Petric, M. Shin, P. Chain, L. Hauberg-lotte et al., Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants, Frontiers in Plant Science, vol.4, p.120, 2013.
DOI : 10.3389/fpls.2013.00120

W. Nierman, D. Deshazer, H. Kim, H. Tettelin, K. Nelson et al., Structural flexibility in the Burkholderia mallei genome, Proceedings of the National Academy of Sciences, vol.55, issue.1, pp.14246-51, 2004.
DOI : 10.1111/j.1365-2958.1987.tb01937.x

URL : http://www.pnas.org/content/101/39/14246.full.pdf

M. Holden, R. Titball, S. Peacock, A. Cerdeño-tárraga, T. Atkins et al., Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei, Proceedings of the National Academy of Sciences, vol.46, issue.3, pp.14240-14245, 2004.
DOI : 10.1046/j.1365-2958.2002.03190.x

URL : http://www.pnas.org/content/101/39/14240.full.pdf

Y. Seo, J. Lim, B. Choi, H. Kim, E. Goo et al., Complete Genome Sequence of Burkholderia gladioli BSR3, Journal of Bacteriology, vol.193, issue.12, p.3149, 2011.
DOI : 10.1128/JB.00420-11

URL : http://jb.asm.org/content/193/12/3149.full.pdf

A. Khan, H. Asif, D. Studholme, I. Khan, and M. Azim, Genome characterization of a novel Burkholderia cepacia complex genomovar isolated from dieback affected mango orchards, World Journal of Microbiology and Biotechnology, vol.18, issue.5, pp.2033-2077, 2013.
DOI : 10.1101/gr.074492.107

E. Cascales and C. Cambillau, Structural biology of type VI secretion systems, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.364, issue.2, pp.1102-1113, 2012.
DOI : 10.1016/j.jmb.2006.08.078

URL : https://hal.archives-ouvertes.fr/hal-01458261

P. Bernal, L. Allsopp, A. Filloux, and M. Llamas, The Pseudomonas putida T6SS is a plant warden against phytopathogens, The ISME Journal, vol.11, issue.4, pp.972-87, 2017.
DOI : 10.1016/j.bbamcr.2014.03.018

URL : http://www.nature.com/ismej/journal/v11/n4/pdf/ismej2016169a.pdf

M. Anderson, P. Vonaesch, A. Saffarian, B. Marteyn, and P. Sansonetti, Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy, Cell Host & Microbe, vol.21, issue.6, pp.769-776, 2017.
DOI : 10.1016/j.chom.2017.05.004

M. Lardi, S. De-campos, G. Purtschert, L. Eberl, and G. Pessi, Competition Experiments for Legume Infection Identify Burkholderia phymatum as a Highly Competitive ??-Rhizobium, Frontiers in Microbiology, vol.46, p.1527, 2017.
DOI : 10.1128/JCM.02273-07

URL : https://www.frontiersin.org/articles/10.3389/fmicb.2017.01527/pdf

M. Nelson and M. Sadowsky, Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes, Frontiers in Plant Science, vol.6, p.491, 2015.
DOI : 10.3389/fpls.2015.00491

URL : http://journal.frontiersin.org/article/10.3389/fpls.2015.00491/pdf

A. Hubber, J. Sullivan, and C. Ronson, R7A VirB/D4 Type IV Secretion System, Molecular Plant-Microbe Interactions, vol.20, issue.3, pp.255-61, 2007.
DOI : 10.1094/MPMI-20-3-0255

M. Sugawara, B. Epstein, B. Badgley, T. Unno, L. Xu et al., Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies, Genome Biology, vol.14, issue.2, p.17, 2013.
DOI : 10.1007/BF00425083

M. Bladergroen, K. Badelt, and H. Spaink, Strain That Are Involved in Temperature-Dependent Protein Secretion, Molecular Plant-Microbe Interactions, vol.16, issue.1, pp.53-64, 2003.
DOI : 10.1094/MPMI.2003.16.1.53

D. Voth, L. Broederdorf, and J. Graham, Bacterial Type IV secretion systems: versatile virulence machines, Future Microbiology, vol.70, issue.2, pp.241-57, 2012.
DOI : 10.1046/j.1365-2958.1999.01642.x

URL : http://europepmc.org/articles/pmc3563059?pdf=render

R. Fernández-lópez, M. Garcillán-barcia, C. Revilla, M. Lázaro, L. Vielva et al., Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution, FEMS Microbiology Reviews, vol.48, issue.6, pp.942-66, 2006.
DOI : 10.1099/13500872-140-11-2981

J. De-keyzer, C. Van-der-does, and A. Driessen, The bacterial translocase: a dynamic protein channel complex, Cellular and Molecular Life Sciences (CMLS), vol.60, issue.10, pp.2034-52, 2003.
DOI : 10.1007/s00018-003-3006-y

T. Burg-golani, Y. Pozniak, L. Rabinovich, N. Sigal, N. Paz et al., Membrane Chaperone SecDF Plays a Role in the Secretion of Listeria monocytogenes Major Virulence Factors, Journal of Bacteriology, vol.195, issue.23, pp.5262-72, 2013.
DOI : 10.1128/JB.00697-13

A. Vörös, R. Simm, L. Slamti, M. Mckay, I. Hegna et al., SecDF as Part of the Sec-Translocase Facilitates Efficient Secretion of Bacillus cereus Toxins and Cell Wall-Associated Proteins, PLoS ONE, vol.171, issue.8, p.103326, 2014.
DOI : 10.1371/journal.pone.0103326.s011

B. Coutinho, B. Mitter, C. Talbi, A. Sessitsch, E. Bedmar et al., Regulon Studies and In Planta Role of the BraI/R Quorum-Sensing System in the Plant-Beneficial Burkholderia Cluster, Applied and Environmental Microbiology, vol.79, issue.14, pp.4421-4453, 2013.
DOI : 10.1128/AEM.00635-13

E. Garcia, A. Perault, S. Marlatt, and P. Cotter, contact-dependent growth inhibition system proteins, Proceedings of the National Academy of Sciences, vol.4, issue.29, pp.8296-301, 2016.
DOI : 10.1101/gad.182345.111

J. Mattick, Type IV Pili and Twitching Motility, Annual Review of Microbiology, vol.56, issue.1, pp.289-314, 2002.
DOI : 10.1146/annurev.micro.56.012302.160938

C. Giltner, M. Habash, and L. Burrows, Pseudomonas aeruginosa Minor Pilins Are Incorporated into Type IV Pili, Journal of Molecular Biology, vol.398, issue.3, pp.444-61, 2010.
DOI : 10.1016/j.jmb.2010.03.028

S. Hélaine, E. Carbonnelle, L. Prouvensier, J. Beretti, X. Nassif et al., PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells, Molecular Microbiology, vol.31, issue.1, pp.65-77, 2004.
DOI : 10.1093/infdis/147.2.282

M. Bodogai, S. Ferenczi, D. Bashtovyy, P. Miclea, P. Papp et al., Is Organized and Functions as a Toxin-Antitoxin Module, Molecular Plant-Microbe Interactions, vol.19, issue.7, pp.811-833, 2006.
DOI : 10.1094/MPMI-19-0811

M. Trainer and T. Charles, The role of PHB metabolism in the symbiosis of rhizobia with legumes, Applied Microbiology and Biotechnology, vol.47, issue.6, pp.377-86, 2006.
DOI : 10.1042/bj1281193

D. Vereecke, K. Cornelis, W. Temmerman, M. Jaziri, M. Van-montagu et al., Chromosomal Locus That Affects Pathogenicity of Rhodococcus fascians, Journal of Bacteriology, vol.184, issue.4, pp.1112-1132, 2002.
DOI : 10.1128/jb.184.4.1112-1120.2002

URL : http://jb.asm.org/content/184/4/1112.full.pdf

D. Tamir-ariel, N. Navon, and S. Burdman, Identification of Genes in Xanthomonas campestris pv. vesicatoria Induced during Its Interaction with Tomato, Journal of Bacteriology, vol.189, issue.17, pp.6359-71, 2007.
DOI : 10.1128/JB.00320-07

M. Dunn, J. Ramirez-trujillo, and I. Hernandez-lucas, Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis, Microbiology, vol.47, issue.6, pp.3166-75, 2009.
DOI : 10.1046/j.1365-2958.2003.03412.x

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/155/10/3166.pdf?itemId=/content/journal/micro/10.1099/mic.0.030858-0&mimeType=pdf&isFastTrackArticle=

J. Ramírez-trujillo, S. Encarnación, E. Salazar, A. De-los-santos, M. Dunn et al., Functional Characterization of the Sinorhizobium meliloti Acetate Metabolism Genes aceA, SMc00767, and glcB, Journal of Bacteriology, vol.189, issue.16, pp.5875-84, 2007.
DOI : 10.1128/JB.00385-07

K. Strube, S. De-vries, and R. Cramm, H16, Journal of Biological Chemistry, vol.63, issue.28, pp.20292-300, 2007.
DOI : 10.1074/jbc.M610656200

A. Boscari, E. Meilhoc, C. Castella, C. Bruand, A. Puppo et al., Which role for nitric oxide in symbiotic N 2 -fixing nodules: toxic byproduct or useful signaling/metabolic intermediate? Front Plant Sci, p.384, 2013.
DOI : 10.3389/fpls.2013.00384

URL : http://journal.frontiersin.org/article/10.3389/fpls.2013.00384/pdf

M. Saad, M. Crèvecoeur, C. Masson-boivin, and X. Perret, ABSTRACT, Applied and Environmental Microbiology, vol.78, issue.20, pp.7476-7485, 2012.
DOI : 10.1128/AEM.01691-12

C. Marie, M. Barny, and J. Downie, Rhizobium leguminosarum has two glucosamine syntheses, GImS and NodM, required for nodulation and development of nitrogen-fixing nodules, Molecular Microbiology, vol.113, issue.7, pp.843-51, 1992.
DOI : 10.1042/bj2240799

E. Kamst, C. Breek, and H. Spaink, Functional analysis of chimeras derived from the Sinorhizobium meliloti and Mesorhizobium loti nodC genes identifies regions controlling chitin oligosaccharide chain length, Molecular and General Genetics MGG, vol.264, issue.1-2, pp.75-81, 2000.
DOI : 10.1007/s004380000281

C. Finnie, N. Hartley, K. Findlay, and J. Downie, genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification, Molecular Microbiology, vol.25, issue.01, pp.135-181, 1997.
DOI : 10.1046/j.1365-2958.1997.4471803.x

G. Caetano-anollés, L. Wall, D. Micheli, A. Macchi, E. Bauer et al., Role of Motility and Chemotaxis in Efficiency of Nodulation by Rhizobium meliloti, PLANT PHYSIOLOGY, vol.86, issue.4, p.1228, 1988.
DOI : 10.1104/pp.86.4.1228

M. Mimmack, D. Borthakur, M. Jones, J. Downie, and A. J. , The psi operon of Rhizobium leguminosarum biovar phaseoli: identification of two genes whose products are located at the bacterial cell surface, Microbiology, vol.140, issue.5, pp.1223-1232, 1994.
DOI : 10.1099/13500872-140-5-1223

N. Fraysse, F. Couderc, and V. Poinsot, Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis, European Journal of Biochemistry, vol.26, issue.7, pp.1365-80, 2003.
DOI : 10.1042/0264-6021:3420527

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1432-1033.2003.03492.x/pdf

A. Skorupska, M. Janczarek, M. Marczak, A. Mazur, and J. Król, Rhizobial exopolysaccharides: genetic control and symbiotic functions, Microbial Cell Factories, vol.5, issue.1, p.7, 2006.
DOI : 10.1186/1475-2859-5-7

C. Saint, M. Wexler, P. Murphy, J. Tempé, M. Tate et al., Characterization of genes for synthesis and catabolism of a new rhizopine induced in nodules by Rhizobium meliloti Rm220-3: extension of the rhizopine concept., Journal of Bacteriology, vol.175, issue.16, pp.5205-5220, 1993.
DOI : 10.1128/jb.175.16.5205-5215.1993

M. Bahar, J. De-majnik, M. Wexler, J. Fry, P. Poole et al., Involves a Ferredoxin Oxygenase Complex and the Inositol Degradative Pathway, Molecular Plant-Microbe Interactions, vol.11, issue.11, pp.1057-68, 1998.
DOI : 10.1094/MPMI.1998.11.11.1057

P. Poole, A. Blyth, C. Reid, and K. Walters, myo-Inositol catabolism and catabolite regulation in Rhizobium leguminosarum bv. viciae, Microbiology, vol.140, issue.10, pp.2787-95, 1994.
DOI : 10.1099/00221287-140-10-2787

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/140/10/mic-140-10-2787.pdf?itemId=/content/journal/micro/10.1099/00221287-140-10-2787&mimeType=pdf&isFastTrackArticle=

D. Gordon, M. Ryder, K. Heinrich, and P. Murphy, An experimental test of the rhizopine concept in Rhizobium meliloti, Appl Environ Microbiol, vol.62, pp.3991-3997, 1996.

D. Balleza, F. Gómez-lagunas, and C. Quinto, Cloning and Functional Expression of an MscL Ortholog from Rhizobium etli: Characterization of a Mechanosensitive Channel, Journal of Membrane Biology, vol.28, issue.1, pp.13-27, 2010.
DOI : 10.1042/bj1880131

M. Marchetti, D. Capela, M. Glew, S. Cruveiller, B. Chane-woon-ming et al., Experimental Evolution of a Plant Pathogen into a Legume Symbiont, PLoS Biology, vol.52, issue.1, p.1000280, 2010.
DOI : 10.1371/journal.pbio.1000280.s012

URL : https://hal.archives-ouvertes.fr/hal-00595766

M. Marchetti, A. Jauneau, D. Capela, P. Remigi, C. Gris et al., Shaping Bacterial Symbiosis With Legumes by Experimental Evolution, Molecular Plant-Microbe Interactions, vol.27, issue.9, pp.956-64, 2014.
DOI : 10.1094/MPMI-03-14-0083-R

D. Meyer, S. Briscoe, L. Martínez-hidalgo, P. Agapakis, C. De-los-santos et al., Oxidase Genes, Molecular Plant-Microbe Interactions, vol.29, issue.8, pp.609-628, 2016.
DOI : 10.1094/MPMI-05-16-0091-R

T. Sobolevsky, E. Chernetsova, A. Revelsky, I. Revelsky, A. Starostin et al., Electron Ionization Mass Spectra and Their Reproducibility for Trialkylsilylated Derivatives of Organic Acids, Sugars and Alcohols, European Journal of Mass Spectrometry, vol.371, issue.5, p.487, 2003.
DOI : 10.1007/s002160100941

A. Ruiz-matute, O. Hernández-hernández, S. Rodríguez-sánchez, and M. Sanz, Derivatization of carbohydrates for GC and GC???MS analyses, Journal of Chromatography B, vol.879, issue.17-18, pp.1226-1266, 2011.
DOI : 10.1016/j.jchromb.2010.11.013

URL : https://digital.csic.es/bitstream/10261/49791/3/accesoRestringido.pdf

O. Lowry, N. Rosebrough, A. Farr, and R. Randall, Protein measurement with the Folin phenol reagent, J Biol Chem, vol.193, pp.265-75, 1951.

J. Vincent, A manual for the pratical study of root-nodule bacteria, 1970.

P. Roche, P. Lerouge, C. Ponthus, and J. Promé, Structural determination of bacterial nodulation factors involved in the Rhizobium meliloti-alfalfa symbiosis, J Biol Chem, vol.266, pp.10933-10973, 1991.

M. Barnett, A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction, Proceedings of the National Academy of Sciences, vol.31, issue.19, pp.16636-16677, 2004.
DOI : 10.1093/nar/gkg763

D. Vallenet, E. Belda, A. Calteau, S. Cruveiller, S. Engelen et al., MicroScope???an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data, Nucleic Acids Research, vol.176, issue.D1, pp.636-683, 2013.
DOI : 10.1128/jb.176.17.5483-5493.1994

URL : https://academic.oup.com/nar/article-pdf/41/D1/D636/18788608/gks1194.pdf

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biology, vol.11, issue.10, p.106, 2010.
DOI : 10.1186/gb-2010-11-10-r106

URL : http://precedings.nature.com/documents/4282/version/1/files/npre20104282-1.pdf

M. Dillies, A. Rau, J. Aubert, C. Hennequet-antier, M. Jeanmougin et al., A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis, Briefings in Bioinformatics, vol.12, issue.1, pp.671-83, 2013.
DOI : 10.1186/1471-2105-12-323

URL : https://hal.archives-ouvertes.fr/hal-01521274

T. Davidsen, E. Beck, A. Ganapathy, R. Montgomery, N. Zafar et al., The comprehensive microbial resource, Nucleic Acids Research, vol.33, issue.suppl_1, pp.340-345, 2010.
DOI : 10.1093/nar/gki892

URL : https://academic.oup.com/nar/article-pdf/38/suppl_1/D340/11217967/gkp912.pdf

D. Vallenet, A. Calteau, S. Cruveiller, M. Gachet, A. Lajus et al., MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes, Nucleic Acids Research, vol.10, issue.D1, pp.517-545, 2017.
DOI : 10.1186/s13059-015-0701-6

URL : https://academic.oup.com/nar/article-pdf/45/D1/D517/8846854/gkw1101.pdf

M. Krzywinski, J. Schein, I. Birol, J. Connors, R. Gascoyne et al., Circos: An information aesthetic for comparative genomics, Genome Research, vol.19, issue.9, pp.1639-1684, 2009.
DOI : 10.1101/gr.092759.109

URL : http://genome.cshlp.org/content/19/9/1639.full.pdf

S. Shapiro and M. Wilk, An analysis of variance test for normality (complete samples), Biometrika, vol.52, issue.3-4, pp.591-611, 1965.
DOI : 10.1093/biomet/52.3-4.591

J. Morey, J. Ryan, V. Dolah, and F. , Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR, Biological Procedures Online, vol.27, issue.1, pp.175-93, 2006.
DOI : 10.1016/j.toxicon.2005.02.015

URL : https://link.springer.com/content/pdf/10.1251%2Fbpo126.pdf

L. Moulin, A. Klonowska, C. B. Booth, K. Vriezen, J. Melkonian et al., Complete Genome sequence of Burkholderia phymatum STM815(T), a broad host range and efficient nitrogen-fixing symbiont of Mimosa species, Stand Genomic Sci, vol.2014, issue.3, pp.9763-74

L. Moulin, D. Mornico, R. Melkonian, and A. Klonowska, Draft Genome Sequence of Rhizobium mesoamericanum STM3625, a Nitrogen-Fixing Symbiont of Mimosa pudica Isolated in French Guiana (South America), Genome Announcements, vol.2009, issue.0, pp.66-1200066
DOI : 10.1093/database/bap021