A. Airola, S. Pyysalo, J. Björne, T. Pahikkala, F. Ginter et al., All-paths graph kernel for protein-protein interaction extraction with evaluation of cross corpus learning, BMC Bioinformatics, vol.9, p.2, 2008.

A. Alicante and A. Corazza, Barrier Features for Classification of Semantic Relations, Proceedings of the International Conference Recent Advances in Natural Language Processing (RANLP) 2011, September, Hissar, pp.509-514, 2011.

F. Baader, I. Horrocks, and U. Sattler, Description Logics. Handbook of Knowledge Representation, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00624141

R. Baeza-yates and B. Ribeiro-neto, Modern Information Retrieval, 1999.

M. Brown and J. F. Kros, Data Mining and the Impact of Missing Data. Industrial Management and Data Systems, vol.103, pp.611-621, 2003.

M. Ciaramita and Y. Altun, Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger, Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP '06), pp.594-602, 2006.
DOI : 10.3115/1610075.1610158

S. P. Choi, C. H. Jeong, Y. S. Choi, and S. H. Myaeng, Relation extraction based on extended composite kernel using flat lexical features, JKIISE: Software Application, vol.36, issue.8, 2009.

S. P. Choi, S. Lee, H. Jung, and S. Song, An intensive case study on kernel-based relation extraction, Proceedings of Multimedia Tools and Applications, pp.1-27, 2013.
DOI : 10.1007/s11042-013-1380-5

J. Christensen, . Mausam, S. Soderland, and O. Etzioni, Semantic role labeling for open information extraction, Proceedings of the NAACL HLT, First International Workshop on Formalisms and Methodology for Learning by Reading (FAM-LbR '10), pp.52-60, 2010.

M. De-marneffe and C. D. Manning, Stanford typed dependencies manual, 2006.

D. Dou, H. Wang, and H. Liu, Semantic data mining: A survey of ontology-based approaches, IEEE International Conference on Semantic Computing (ICSC), pp.244-251, 2015.

J. Fürnkranz, D. Gamberger, and N. Lavrac, Berlin Rules // effect after drug dpRCount(r, dp, up, down), Foundations of Rule Learning, 2012.

, // effect on xxxx following drug dpRCount(r, dp, up, down)

, // drug nsubj <cause-increase>dobj effect dpDirectCause(r, dp1, dp2, up, down)

C. Giuliano, A. Lavelli, and L. Romano, Relation Extraction and the Influence of Automatic NER, ACM Transactions on Speech and Language Processing, vol.5, issue.1, 2007.

T. Gruber, Towards Principles for the Design of Ontologies used for Knowledge Sharing. International Workshop on Formal Ontology in Conceptual Analysis and Knowledge Representation, 1993.

F. Gutierrez, D. Dou, S. Fickas, D. Wimalasuriya, and H. Zong, A Hybrid Ontology-based Information Extraction System, Journal of Information Science, pp.1-23, 2015.
DOI : 10.1177/0165551515610989

P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-schneider, and S. Rudolph, OWL 2 Web Ontology Language Primer. W3C Working Draft, 2009.

T. Horvath, G. Paass, F. Reichartz, and S. Wrobel, A Logic-based Approach to Relation Extraction from Texts, Proceedings of the 19th international conference on Inductive logic programming (ILP'09), pp.34-48, 2009.

J. Jiang, Information Extraction from, Mining Text data, pp.11-41, 2012.

J. Jiang, Y. Guan, and C. Zhao, WI-ENRE in CLEF eHealth Evaluation Lab, Clinical Named Entity Recognition Based on CRF. Conference and Labs of the Evaluation forum, 2011.

J. Jiang and C. X. Zhai, A systematic exploration of the feature space for relation extraction, Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp.113-120, 2007.

V. Karkaletsis, P. Fragkou, G. Petasis, and E. Iosif, Ontology Based Information Extraction from Text, LNAI, vol.6050, pp.89-109, 2011.

R. J. Kate and R. J. Mooney, Joint Entity and Relation Extraction using Card-Pyramid Parsing, Proceedings of the 14th Conference on Computational Natural Language Learning (CoNLL-2010), pp.203-212, 2010.

R. Kohavi and G. H. John, Automatic parameter selection by minimizing estimated error, 12 th International Conference on Machine Learning, 1995.

N. Lavrac and S. Dzeroski, Inductive Logic Programming: Techniques and Applications, 1994.

M. Li, T. Munkhdalai, X. Yu, and H. R. Keun, A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction, Mathematical Problems in Engineering, 2015.

R. Lima, J. Batista, R. Ferreira, F. Freitas, R. Lins et al., Transforming graph-based sentence representations to alleviate overfitting in relation extraction, Proceedings of the 2014 ACM symposium on Document engineering (DocEng '14), pp.53-62, 2014.

R. Lima, B. Espinasse, and F. Freitas, Relation Extraction from Texts with Symbolic Rules Induced by Inductive Logic Programming, Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, IEEE-ICTAI 2015, Vietri sul Mar, pp.194-201, 2015.

R. Lima, B. Espinasse, H. Oliveira, L. Pentagrossa, and F. Freitas, Information Extraction from the Web: An Ontology-Based Method using Inductive Logic Programming, Proceeding of the IEEE International Conference on Tools with Artificial Intelligence, IEEE-ICTAI 2013, pp.741-748, 2013.

A. W. Muzaffar, F. Azam, and U. Qamar, A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set, Computational and Mathematical Methods in Medicine, 2015.

S. Muggleton, Inductive Logic Programming, New Generation Computing, vol.8, issue.4, p.29, 1991.

S. Muggleton, Inverse entailment and Progol, New Generation Computing, vol.13, pp.245-286, 1995.

S. Muggleton and C. Fen, Efficient induction of logic programs, 1st Conference on Algorithmic Learning Theory Tokyo, pp.368-381, 1990.

S. Muggleton, J. Santos, and A. Tamaddoni-nezhad, ProGolem: a system based on relative minimal generalisation, 19th International Conference on ILP, pp.131-148, 2009.

, // effect on xxxx following drug dpRCount(r, dp, up, down)

, // drug nsubj <cause-increase>dobj effect dpDirectCause(r, dp1, dp2, up, down)

V. Nitesh, K. W. Chawla, . Bowyer, O. H. Lawrence, and K. W. Philip, SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, vol.16, issue.1, pp.321-357, 2002.

A. Patel, G. Ramakrishnan, and P. Bhattacharya, Incorporating Linguistic Expertise Using ILP for Named Entity Recognition in, Data Hungry Indian Languages, vol.5989, pp.178-185, 2010.

G. Petasis, V. Karkaletsis, G. Paliouras, A. Krithara, and E. Zavitsanos, Ontology Population and Enrichment: State of the Art, Multimedia Information Extraction, vol.6050, pp.134-166, 2011.

G. Plotkin, A note on inductive generalization, Machine Intelligence, vol.5, pp.153-163, 1971.

G. Ramakrishnan, S. Joshi, S. Balakrishnan, and A. Srinivasan, Using ILP to Construct Features for Information Extraction from Semi-structured Text, Proceedings of the 17th International Conference on Inductive Logic Programming, vol.4894, pp.211-224, 2008.
DOI : 10.1007/978-3-540-78469-2_22

URL : http://ftp.cs.wisc.edu/machine-learning/shavlik-group/ilp07wip/ilp07_ramakrishnan.pdf

D. Roth and W. Yih, Global Inference for entity and relation identification via a linear programming formulation. Introduction to Statistical Relational Learning, L. Getoor and B. Taskar, the, 2007.

D. Roth and W. Yih, A Linear Programming Formulation for Global Inference in Natural Language Tasks, CoNLL, pp.1-8, 2004.

J. Santos, Efficient Learning and Evaluation of Complex Concepts in Inductive Logic Programming, 2010.

M. D. Seneviratne and D. N. Ranasinghe, Inductive Logic Programming in an Agent System for Ontological Relation Extraction, International Journal of Machine Learning and Computing, vol.1, issue.4, pp.344-352, 2011.
DOI : 10.7763/ijmlc.2011.v1.51

D. Smole, M. Ceh, and T. Podobnikar, Evaluation of inductive logic programming for information extraction from natural language texts to support spatial data recommendation services, International Journal of Geographical Information Science, vol.25, pp.1809-1827, 2011.

J. Tang, M. Hong, D. Zhang, B. Liang, and J. Li, Information Extraction: Methodologies and Applications. Emerging Technologies of Text Mining: Techniques and Applications, pp.1-33, 2007.

D. C. Wimalasuriya and D. Dou, Ontology-Based Information Extraction: An Introduction and a Survey of Current Approaches, Journal of Information Science, pp.1-20, 2009.

D. C. Wimalasuriya and D. Dou, Components for Information Extraction: Ontology-Based Information Extractors and Generic Platforms. CIKM'10, 2010.
DOI : 10.1145/1871437.1871444

G. Zhou, M. Zhang, J. Zhu, and Q. , Tree Kernel-based Relation Extraction with Context-Sensitive Structured Parse Tree Information, Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp.728-736, 2007.

J. Björne and T. Salakoski, TEES 2.2: Biomedical Event Extraction for Diverse Corpora, BMC Bioinformatics, vol.16, 2015.

R. Byrd, G. Chin, J. Nocedal, and Y. Wu, Sample size selection in optimization methods for machine learning, Journal of Mathematical Programming, vol.134, issue.1, pp.127-155, 2012.

R. Camacho, R. Ramos, and N. Fonseca, AND Parallelism for ILP: The APIS System, Inductive Logic Programming: 23rd International Conference, ILP 2013, pp.93-106, 2013.

A. Srinivasan, T. Faruquie, and S. Joshi, Data and task parallelism in ILP using MapReduce, Journal of Machine Learning, vol.86, issue.1, pp.141-168, 2012.
DOI : 10.1007/s10994-011-5245-8

J. Xia, A. C. Fang, and X. Zhang, A novel feature selection strategy for enhanced biomedical event extraction using the Turku system, BioMed Research International, vol.2014, p.205239, 2014.