
HAL Id: hal-01795268
https://amu.hal.science/hal-01795268

Submitted on 18 May 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From a Web Services Catalog to a Linked Ecosystem of
Services

Fatma Slaimi, Sana Sellami, Omar Boucelma

To cite this version:
Fatma Slaimi, Sana Sellami, Omar Boucelma. From a Web Services Catalog to a Linked Ecosys-
tem of Services. Semantic Keyword-Based Search on Structured Data Sources - Third International
KEYSTONE Conference, IKC 2017, Sep 2017, Gdańsk, Poland. �hal-01795268�

https://amu.hal.science/hal-01795268
https://hal.archives-ouvertes.fr

 1

From a Web Services Catalog to a

Linked Ecosystem of Services

Fatma Slaimi1, Sana Sellami1, Omar Boucelma1
1Aix Marseille Université, CNRS, ENSAM, Université de Toulon,

LSIS UMR 7296,13397, Marseille, France

{fatma.slaimi,sana.sellami,omar.boucelma}@univ-amu.fr

Abstract—In this paper, we present a Linked ecosystem of Web services

where both Web services, mashups and users are represented as a multigraph

structure. For illustration and experimental purposes, a graph has been con-

structed, in gathering different data from ProgrammableWeb. The graph is stored

in a Neo4J graph database and serves as a repository for real collection of data

for achieving services/mashups discovery, selection and recommendation.

Keywords: Web Services; Discovery, Recommendation; Linked Data; Graph Databases;

Neo4J.

1 Introduction

The advent of service oriented approaches has led to plethora of available Web ser-

vices (or APIs). However, and besides the availability of these services through direc-

tories/catalogues such as ProgrammableWeb1 (PWeb) Web services’ gates still remain

non-well-structured in order to ease the discovery and recommendation processes. In

addition, all these services/mashups are a bit scattered on the Web and there are no

materialized links among them that could facilitate their discovery. Therefore, we need

an explicit WSs representation in materializing different links accordingly with

different semantics.

Indeed, with the growth of social networks and the emersion of social Web, we do

not need to take leverage only from the user’s previous usages, user’s profile, or to

consider him/her as an independent, isolated entity, but we may also consider other

types of relationships as inputs, e.g. follow, confidence, etc. These relationships gener-

ate graphs of interconnected close or “similar” users, among which are those having

common interests. In PWeb, users’ relations are represented by track relationships (Fig.

1).

1 https://www.programmableweb.com/

 2

Fig. 1 Track relationships on ProgrammableWeb

Hence, the goal of this paper is to describe the design of a PWeb-like ecosystem

model as a multigraph where intra-services/mashups, intra-users and inter services/us-

ers and mashups links are exhibited. The idea is to make leverage of the available in-

formation on objects (services, mashups and users) in order to discover and to recom-

mend services of interest to a user, accordingly on his/her profile. From the implemen-

tation standpoint, the graph is stored in a graph database and a prototype has been im-

plemented on top of a Neo4j graph database. For validation, an experimental evaluation

has been performed with a real dataset2.

 The remainder of this paper is organized as follows. In section 2, we describe some

related work. In section 3, we present the PWeb heterogeneous multigraph. Section 4

describes the graph exploration to recommend services/mashups. Section 5 details the

implementation features and the results of our approach. Section 6 concludes the paper

and presents some future work directions.

2 Related Work

Several research works have been proposed to model the Web services Network as

a graph in order to discover or recommend APIs or mashups [3], [6], [9]. As described

in [6], authors propose a three-level graph model for visualizing the Web service eco-

system: (1) An API graph that connects services when they are used in the same

mashup; (2) A domain graph that provides information about services that are more

likely to be connected to produce innovative applications; and (3) A tag graph which

connects two tags if there exist two APIs which are labeled with those tags and appear

in the same mashup. In addition, the authors in [3] propose a graph based recommen-

dation approach to assign tags to unlabeled APIs by exploiting both graph structure

information and semantic similarity.

Moreover, the convergence towards a Web of linked data3 leads to a novel services’

representation, known as “services linked by their URIs” or linked services allowing

the definition of interconnected services based on their functionalities. In [2], authors

propose a framework for defining a linked view over multiple repositories and for

2 http://www.lsis.org/sellamis/Projects.html#WeS-ReG
3 http://linkeddata.org/

 3

searching their content. The objective is to publish repository contents and identify se-

mantic links across them in order to exploit complementary API descriptions. The mo-

tivation of this framework are threefold: (i) the overlapping of the storage of APIs, (ii)

the same API is registered multiple times within different repositories, (iii) similarities

between APIs and mashups across different repositories cannot be exploited to enrich

search results. Authors also identified a link (denoted simAs link) between mashups of

resources which is calculated based on the comparison of their terminological items. In

[5] an approach for providing new services based on service composition is proposed.

Authors define the term of composite web services for a web service that does not pro-

vide requested service but delegates parts of the execution to other web services and

receives the results from them to perform the whole service. However, all these models

do not consider the users’ interactions.

Indeed, social networks change the nature of “useful” metadata in the discovery and

recommendation processes [4]. Consequently, we do not need to profit only from the

user’s previous uses, user’s profile, or to consider him/her as an independent, isolated

entity, but we can take as input other types of relationships, e.g. follow, confidence, etc.

These relationships are used to generate graphs of interconnected users, which help in

determining closest users or those having common interests.

The works of Deng.et al. [7] [8] are based on the analysis of social networks’ con-

tents and users’ relationships. Authors propose a Web service recommendation system

based on trust relationships modeled by a graph and established either i) explicitly when

a user specifies his/her list of trustful connections, from the beginning, or ii) implicitly

when the same QoS evaluation is given by two different users. Note that this approach

exploits the preferences similarities among users involved in the network, but still suf-

fers from the lack of data especially for new users, e.g. preferences, previous uses, etc.

In [12], authors proposed a discovery/composition model (called LinkedWS) based on

social networks. This model is able to detect the interactions among Web services. The

relations used by LinkedWS are: Recommendation/Partners, Recommendation/Robust-

ness and Collaboration. The composition process implements both Recommenda-

tion/Partners and Collaboration relationships. LinkedWS can be updated by adding new

nodes/relations or by modifying them.

Within this context, we propose to model the programmable Web ecosystem as a

heterogeneous multi-graph. The graph considers the interest relationships between sys-

tem’s users and published Web services/mashups. The goal is to streamline the search

for a service and also to allow the detection of users’ neighborhoods. In addition, the

use of such graph representation makes the system able to propose a service to a re-

quester and to personalize a recommendation for a new user.

3 Heterogeneous Multigraph of the Programmable Web

In this section, we describe a the PWeb “social network”. This network is an extension

of a previous work [11] on Linked APIs graph database while considering more

nodes/relationships.

 4

3.1 Multigraph Overview

The network is modeled as a heterogeneous multigraph by means of users/services and

mashups relationships. This multigraph is depicted in (Fig. 2) and consists on four lev-

els according to the different nodes: Categories level, Services level, Mashups and Us-

ers levels. A service may belong to one or several categories (membership relationship);

A user can follow services/mashups used by other users even if he/she is not directly

connected to these users.

Fig. 2. Heterogeneous multigraph of the Programmable Web

The multigraph exhibits four different types of relationships among both users and

services/mashups. Relationships are the edges of the multigraph. First, knowing that

each service/mashup may belong to a category, e.g. twitter service belongs to social

category, we came up a Belongs_To link. Next, services (resp. mashups) need to be

related to each other. Based on the services (resp. mashups) properties, we proposed

the similar link. We identify the Belongs_To_mashup link between services and

mashups when a service is part of a mashup. Finally, each user can follow ser-

vices/mashups and other users. We define then a track link between these entities.

3.2 Similarity Relationships

In this section, we describe the different relationships that may exist between users

(resp. services/mashups) in order to construct the multigraph. These relationships are

defined on the basis of similarities among entities. Similarities are based on follow/

track relationships and properties similarities. Track relationships are expressed by

means of PWeb tracks. A user can track (follow): web services, mashups, or other

users.

Services Relationships (Similar link). Currently, several Web services (e.g. google

Maps, big Maps) that are exposed on existing platforms such as ProgrammableWeb are

functionally equivalent. A relationship can be defined between each pair of functionally

similar services. This similarity is determined by comparing services’ description items,

 5

i.e., category, name, description and tags. The similarity between two services (for-

mula.1) is calculated using the average of Information Retrieval (IR) metrics [14] as

described in the Table 1.
Table 1 IR similarity measures

Service Prop-

erties

Measure

s

Formula

Category cosine simCat (C1,C2)=
|𝑉𝐶1.𝑉𝐶2|

||𝑉𝐶1||.||𝑉𝐶2||

Where C1 and C2 are the categories of services.

VC1 and C2 are the vectors of words of C1 and resp. C2.

Name Ngram simName (n1,n2)=
𝐶(𝑤𝑛−1𝑤𝑛)

𝐶(𝑤𝑛−1)

Where W is the set of words in n1 and n2, C(wn-1) represents

the count of bigrams starting with wn-1

Description cosine simDesc=
|𝑉𝐷1.𝑉𝐷2|

||𝑉𝐷1||.||𝑉𝐷2||

Tag Jaccard simTag (T1,T2)=
|𝑇1⋂𝑇2|

|𝑇1∪𝑇2|

 Sim (Si,Sj)= Average (𝑠𝑖𝑚𝐶𝑎𝑡 , 𝑠𝑖𝑚𝑁𝑎𝑚𝑒 , 𝑠𝑖𝑚𝐷𝑒𝑠𝑐 , 𝑠𝑖𝑚𝑇𝑎𝑔) (1)

Mashups Relationships (Similar link). We establish a link between mashups if they

share one or more services. For example, twitter API belongs to BBC Browser and

Soccer Shots mashups Mashups similarities are measured based on the following For-

mula (2):

SimMashups (M1,M2)=
|𝑆𝑀1⋂𝑆𝑀2|

|𝑆𝑀1∪𝑆𝑀2|
 (2)

Where SM1 and SM2 represent services composing M1 and M2.

Users Relationships (Track link). We consider two types of relationships between us-

ers: follow and similarity relationships. The follow relationship represents a relation of

interest between two users. The similarity relationship between users is determined if

two users follow the same services, mashups and eventually other users, then these

users may have similar interests. A relation is then inferred between these two users,

and it is labeled as a similarity relationship.

The similarity relationship between users is determined according to the number of

services and mashups that users have in common in their watchlist. Users deploying

several common services may have similar interests and could be considered as similar.

The similarity between two users ui and uj is measured using the following function (3)

[1].

Simu (ui,uj)=
|𝐻𝑢𝑖⋂ 𝐻𝑢𝑗|

|𝐻𝑢𝑖|
 (3)

Where Hui and Huj are the recent histories of users ui and uj respectively.

 6

Follows we will describe services/mashups recommendation approach based on this

multigraph.

4 MultiGraph based Recommendation Approach

We propose a hybrid recommendation approach [15] based on previously described

relationships in the multigraph, user’s record and preferences, invocations and watch-

lists in order to recommend relevant services/mashups.

We consider a scenario when the user searches for a Web service. The recommen-

dation process described in Fig. 3 involves: i) Web services search in order to find the

most relevant services in the services graph according to the user’s request; ii) recom-

mending relevant services according to the user’s history, iii) recommending the

mashups which share the same relevant services according to the mashups relationships

in the graph and the mashups tracked by the user’s neighbors and iv) ranking the re-

sulted Web services/mashups list in terms of the services/mashups’ according to theirs

popularities to recommend the most relevant ones.

Fig. 3. Recommendation Process

4.1 Web Services Discovery

Given a user query, the search process consists in retrieving the most relevant services.

The process returns the top k-similar Web services that are relevant. The user query is

keyword-based and may include one (or more) category (ies), a service name, tags,

service’s protocol (SOAP, REST, etc.). For the similarity between a user request R and

each service in the graph, we combine several string similarity functions [14], such as:

Ngram for services names, cosinus for categories, Jaccard for tags and cosinus for tex-

tual descriptions.

 7

4.2 Web Services/mashups Recommendation

Services Recommendation Process. The recommendation process is based on the pre-

viously generated multigraph. To recommend Web services, we need to rank them

based on their popularity scores. The popularity of a service (Pop(s)) denotes the num-

ber of previously recorded usages (Hu) (of the user and his/her neighbors) this service

has been involved in. The neighbors of a user are those related to him/her in the graph.

We choose to Top K most similar users and we compute the popularity of a service in

using correspondence matrix M (users are the lines, and services are the columns):

𝑀[𝑢𝑖, 𝑠𝑗] = {
1 𝑖𝑓 𝑢𝑖 𝑡𝑟𝑎𝑐𝑘𝑠 𝑠𝑗

0 𝑒𝑙𝑠𝑒

𝑃𝑜𝑝(𝑠𝑗) =
∑ 𝑀[𝑢𝑖,𝑠𝑗]𝑖∈|𝑈|

|𝑈|
 (4)

Mashup recommendation Process. The mashups recommendation is based on the re-

lationships between services, mashups and users in the multigraph. The recommenda-

tion algorithm will return the popular mashups that share similar services and the

mashups tracked by the user’s neighbors. The popularity of mashups is computed ac-

cording to the tracks relations between users and mashups.

5 Experimental Results

In this section, we describe the generation of a proposed multigraph model and the

experimental obtained results following the implementation of our recommender sys-

tem4 with a real dataset crawled from ProgrammableWeb.

5.1 Implementation

Fig. 4 illustrates the main tasks involved to generate the graph database.

Fig. 4. Workflow of the multigraph model

4 http://www.lsis.org/sellamis/Projects.html#WeS-ReG

 8

For evaluation, we crawled 828 users, 700 Web services, 300 mashups and 344 watch-

lists (users’ previous tracks). The relationships similarities module computes similari-

ties among services, mashups and users in order to build the graphs. We built a Neo4J

graph database consisting of 1460 nodes (116 categories, 700 services, and 344 users

having a watchlist, 300 mashups) and 1756 relationships. The users’ level consists of

nodes (users) and edges that are labeled as FOLLOW relationships between users. At

the services (respect. Mashups) level, services (mashups) are grouped by categories as

illustrated in Fig. 5. We have defined four types of relationship between nodes: 1)

BELONGS_TO is established between a service(s) (or mashups) and a category, 2)

SIMILAR is the similarity relationship between services (resp. mashups), 3)

BELONGS_To_Mashups denotes a link between services and mashups, and 4) TRACK

is the link between users and services /mashups.

Fig. 5. Excerpt of Users/Services Multigraph

5.2 Experimental Evaluation

The goal of the experimentations is to evaluate the user’s satisfaction with recom-

mended services based on graph database exploration. The recommendation system

performs graph analytics to produce a set of recommended services and mashups ac-

cording to a user’s request. Our assumption is that the user belongs to the user’s graph.

A user’s query consists of a category and a set of keywords. Filtering by category is

first carried out and then the similarity between user’s query and services’ (mashups’)

components is computed to find the most similar services or mashups. The recommen-

dation system returns a set of ranked services (mashups) which may be of interest to

the user. These services are retrieved from the list of discovered services and then

ranked according to the service popularity.

Two types of experiments were conducted: first, we assess the performance of our sys-

tem in term of CPU time. Second, we evaluate the quality of the recommendations.

 9

Our experiments have been conducted on a dual Core i 7@2.50G PC with 8G RAM,

under Windows 10.

CPU time Evaluation.

We compared the execution time of our recommendation system called WReG with

that obtained by known recommendation approaches in the literature using the librec

framework5 namely, i) TrustSVD[10] which is a trust-based matrix factorization tech-

nique recommendation system that analyzes the social trust data from real-world data

sets ; ii) Recommendation of popular services which is the applied strategy by Pro-

grammableWeb. It recommends the most popular services on the basis of use in

mashups. The most popular service is the most used in mashups.

We carried out 10 times our algorithm with random inputs (the users’ services pre-

vious uses for WReG and QoS of these same services for other approaches). Fig. 6

illustrates the results in terms of the obtained CPU time in seconds for the different

approaches.

Fig. 6. Execution time (ms) of the recommendation approaches

We notice that the recommendation of popular services is more efficient than the other

approaches. This can be vindicated by the fact that this approach finds out only the most

frequent services used in mashups. WReG and TrustSVD approaches are more costly

due to the data filtering process which explore the users’ neighbors’ history identified

based on users relations in the multigraph. However, WReG is more efficient since it

does not perform any other similarity measurements between users. These measure-

ments are computed during the graph generation.

Quality of the Recommendation

In order to estimate the quality of recommendations generated by our system, we

divide the dataset (users’ tracks of services and mashups extracted from watchlists) into

a training set and a test set. To evaluate the quality and the performance of the recom-

mendation based graph database system, we use precision, recall, RMSE and hit-rank

measures.

5 http://www.librec.net/

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

Popular TrustSVD WReG

 10

Let’s PR denote the set of relevant recommended services, R the set of recommended

services and P the set of relevant services.

Precision: refers to a ratio of correctly predicted (satisfying user) services to the

number of all recommended services: Precision=
|𝑃𝑅|

|𝑅|

Recall: refers to the ratio of correctly predicted services to the number of all the

services satisfying the user in the testing set: Recall=
|𝑃𝑅|

|𝑃|

RMSE: The Root Mean Squared Error (RMSE) is used in evaluating accuracy of

predicted rating (rs). Let rs= {
1 if s ∊ P

0 else
.

RMSE=√
∑ (1−𝑟𝑠𝑢,𝑠)

𝑁

Where N is the number of recommended services.

Hit-rank: takes into account the ranks of returned services.

Hit-rank=
1

𝑚∗|𝑅|
∑ ∑

1

𝑝𝑖

ℎ
𝑖=1𝑢∈𝑈

where h is the number of relevant services occurring at the positions p1,p2, …,ph within

the recommendation list; m is the total number of the users.

To compute the recall, precision and Hit-rank, we used 5 and 10 first resulting recom-

mended services (Fig.7) and mashups (Top 5, Top 10) (Fig.8). We note that the

accuracy of the recommendations increases proportionally with the number of returned

services/mashups. The likelihood of providing a relevant service is greater when the

number of recommended services increases. Indeed, it may be difficult for

recommendation algorithms to identify all intersting services for users, while it is

relatively easier to recommend a subset of relevant services.

Fig. 7. Recall, Precision, RMSE and Hit-

rank numbers (w.r.t the number of recom-

mended services)

Fig. 8. Recall, Precision, RMSE and Hit-

rank numbers (w.r.t the number of recom-

mended mashups)

0

0,2

0,4

0,6

0,8

1

Top 5 Top 10

Precision Recall RMSE hit-rank

0

0,2

0,4

0,6

0,8

Top 5 Top 10

Precision Recall RMSE hit-rank

 11

Table 2 shows the performance comparison in terms of precision@5, precision@10

recall@5, recall@10, hit-rank@5, hit-rank@10 and RMSE@5, RMSE@10 obtained

values.

We note that WReG performs better than the other approaches. This can be justified by

the fact that, unlike existing approaches, WReG recommendation algorithm is not based

only on intra-services and intra-users relationships but also on users-services and users-

mashups relationships. TrustSVD that is the closest to our system gives good precision

values since it takes account of trust relations between users and services. But as all

rating based approaches, it is not able to recommend services in the lack of rating values

or invocation histories. Unlike TrustSVD, our approach provides good recommenda-

tions of services and mashups even when users do not have services in their histories.

Furthermore, one may notice that Popular, which is the ProgrammableWeb approach,

returns the lowest results compared to TrustSVD and WReG. This is due to the fact that

Popular does not take into account users’ interests and recommends the same services

to all users. The results are not personalized.

Table 2 Comparison of the recommendation approaches

Approaches Precision

@5

Precision

@10

Recall

@5

Recall

@10

RMSE

@5

RMSE

@10

TrustSVD 0.73 0.75 0.61 0.63 0.211 0.2

WReG 0.80 0.85 0.70 0.74 0.2 0.185

Popular 0.41 0.39 0.34 0.61 0.31 0.3

To summarize, our graph based recommender system is based on intra-relations (us-

ers, services, and mashups) and relationships between users and services/mashups.

Compared to existing service recommendation systems, ours performs better in most

cases. The neighborhood size and the users’ histories affect positively the accuracy of

our approach.

6 Conclusion

Since the advent of services oriented approaches and besides the availability of ser-

vices through existing directories/catalogues such as ProgrammableWeb, Web ser-

vices’ gates still remain not well-structured to facilitate the discovery and composition

processes.

In this paper, we describe an approach where a graph-based database model is used

to structure the space of APIs, mashups and users. In order to show the extent of the

graph, we propose a web services and mashups recommendation system. The proposed

approach was implemented using Neo4J, and experiments have been conducted with

real dataset crawled from ProgrammableWeb. Despite the lack of a benchmarking sys-

tem, promising experimental results are despite the non-availability of relevant and spe-

cific benchmarks.

In the future, we plan to extend this work to service management for IoT in order to

perform IoT services discovery.

 12

References

1. Berry, M. W. Drmac, Z., Jessup, E. R.: Matrices, vector spaces, and information retrieval.

SIAM review, vol.41 (1999) 335-362

2. Bianchini,D., Antonellis, V. D., Melchiori, M.: Link-Based Viewing of Multiple Web API

Repositories. In Database and Expert Systems Applications - 25th International Conference,

DEXA 2014, Munich, Germany, (2014) 362–376

3. Liang, T., Chen, L., Wu, J., Bouguettaya, A.: Exploiting Heterogeneous Information for Tag

Recommendation in API Management. IEEE International Conference on Web Services

ICWS 2016 (2016) 436-443

4. Chen, W., Paik, I., Hung, d P. C.: Constructing a global social service network for better

quality of web service discovery. IEEE Trans. Services Computing, vol.8 (2015) 284-298

5. Chen, W., Paik, I.: Improving efficiency of service discovery using Linked databased service

publication. Inf. Syst. Front., vol. 15, no. 4, (2013) 613–625

6. Lyu, S., Liu, J., Tang, M., Kang, G., Cao, B., Duan, Y.: Three-Level Views of the Web

Service Network: An Empirical Study Based on ProgrammableWeb. IEEE International

Congress on Big Data (BigData Congress 2014) 374-381

7. Deng, S., Huang, L., Yin, Y., Tang, W.: Trust-based service recommendation in social net-

work. Appl. Math, vol.9 (2015) 1567-1574

8. Deng, S., Huang, L. Xu, G.: Social network-based service recommendation with trust en-

hancement. Expert Systems with Applications. vol.(41) (2014) 8075-8084

9. Liang, T., Chen, L., Wu, J., Dong, H., Bouguettaya, A.: Meta-Path Based Service Recom-

mendation in Heterogeneous Information Networks. 14th International Conference (ICSOC)

Service-Oriented Computing, vol.9936, (2016) 371-386

10. Guo, G., Zhang, J., Yorke-Smith., N.: TrustSVD: Collaborative filtering with both the ex-

plicit and implicit influence of user trust and of item ratings. Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence, (2015) 123-129

11. Aljalbout, S., Boucelma, O., Sellami, S.: Modeling and Retrieving Linked RESTful APIs:

A Graph Database Approach. On the Move to Meaningful Internet Systems: {OTM} 2015

Conferences Confederated International Conferences: CoopIS, ODBASE, and CTC, (2015)

443-450

12. Maamar, Z., Wives, L. K., Badr, Y., Elnaffar, S., Boukadi, K., Faci, N.: Linkedws: A

novel web services discovery model based on the metaphor of Social networks. Simulation

Modelling Practice and Theory, vol.19 (2011) 121-132

13. Maaradji, A., Hacid, H., Skraba, R., Lateef, A., Daigremont, J., Crespi, N.: Social-based

web services discovery and composition for step-by-step mashup completion. IEEE Inter-

national Conference on Web Services (ICWS 2011) (2011) 700-701

14. Jackson, D.A., M Somers, K., Harvey, H.: Similarity coefficients : measures of co-occur-

rence and association or simply measures of occurrence?. In : The American Naturalist

(1989) 436–453

15. Bobadilla, J., Ortega, F., Hernando, A, GutiéRrez, A.: Recommender systems survey.

Know.-Based Syst., vol. 46 (2013) 109-132

https://scholar.google.fr/citations?user=txbuN0YAAAAJ&hl=fr&oi=sra
https://scholar.google.fr/citations?user=2hKR8rEAAAAJ&hl=fr&oi=sra
https://scholar.google.fr/citations?user=kcrdCq4AAAAJ&hl=fr&oi=sra

