N

N

A Simple Data Cube Representation for Efficient
Computing and Updating
Viet Phanluong

» To cite this version:

Viet Phanluong. A Simple Data Cube Representation for Efficient Computing and Updating. Inter-
national Journal On Advances in Intelligent Systems, 2016, pp.2016 - 2016. hal-01796028

HAL Id: hal-01796028
https://amu.hal.science/hal-01796028
Submitted on 18 May 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://amu.hal.science/hal-01796028
https://hal.archives-ouvertes.fr

A Simple Data Cube Representation for
Efficient Computing and Updating

Viet Phan-Luong

Aix-Marseille Universié
Laboratoire d’'Informatique Fondamentale de Marseille
LIF - UMR CNRS 7279
Marseille, France
Email: vi et . phanl uong@i f.univ-nmrs.fr

Abstract—This paper presents a simple approach to represent In the life cycle of a data warehouse, the fact table can
data cubes that allows efficient computing, querying and updat- incrementally grow with new fact tuples. In consequence,
ing. The representation is based on (i) a recursive constructionfo the data cube must be updated. The update can be done by
the power set of the scheme of the fact table and (ii) a prefix tree updating the stored representation based on the new daa or b
struciture fc|>r the compact storage of cuboids. The experimenta re_computing the entire representation of the data cubecbas
{ﬁsrﬂ:lstﬁ;‘e,ag%gr:;zl :;;iismzh?c\)’: itggtetmhzn?glp{l%%g:;_s efficient 4 the updated fact table. On updating all cuboids, we caa hav

o the same problems as on re-computing all cuboids. However,

Keywords-Data warehouse; Data mining; Data cube; Datacube it js interesting to know between the two possibilities, ihaw

update. conditions, which one is more efficient than the other.

Further more, because of the big volume of the fact
. INTRODUCTION table and the exponential humber of cuboids, we can have a
In data warehouse, a data cube built on a fact table with tremendous number of aggregated tuples in the data cube. As
dimensions andn measures can be seen as the result of th€onsequence, the apprehension on such a number of aggregate
set of the Structured Query Language (SQL) group-by querie_g‘ples to make a good decision on business is a very important
over the power set of dimensions, with aggregate function$Sue-
over the measures. The result of each SQL group-by query The above issues are among the important topics of re-
is an aggregate view, called a cuboid, over the fact tablesearch in data warehouse. There exist many approaches to
The concept of data cube, provided in the online analyticacompute and to represent the data cube. The work [1] presents
processing (OLAP) approach, offers important interests t@ new approach to represent the data cube that is efficient in
business intelligence as it provides aggregate views i datstorage space and in computing. By this approach, the storag
over multiple combinations of dimensions that help mansgerspace of the data cube representation is reduced. Howeeer, w
to make appropriate decision in their business. can have an efficient method to get all cuboids of the entire

Though the concept of data cube is simple, there are marf§at@ cube from the reduced representation.
important issues in computation. In fact, in a data warekpus This work is an extension of [1]. The extension consists
the fact table has generally a big volume. This implies tre co in: (i) development and improvement of the content and
in time and in storage space, when computing the cuboidgii) the study of data cube update based on the proposed
As the number of cuboids in a data cube is exponential wittiepresentation.
respect to the number of dimensions of the fact table, the cos The paper is organized as follows. Section Il presents the
to compute the entire data cube is considerable. related work and the contributions of this work. Section IlI

To improve the query response time on data cube, in OLARNtroduces the concepts of the prime and next-prime schemes
the data cube is usually precomputed and stored on diskdnd cuboids. Section IV presents the structure of the iatedr
However, the storage space of all the data cube is expohentialnary search prele tree used to store cuboids. Sectionheis t
to the number of dimensions of the fact table. For efficieitcy, core of the approach. It shows how to compute the data cube
is necessary to reduce the storage space. By reductionathe d'epresentation and how to restore the entire data cube_f(om
cube is represented in a compact form that is stored on disk§)e reduced representation. Section VI presents an efficien
We must access this form to compute the response to queri@gdorithm for updating the data cube representation. Gecti
on data cube. There exists the trade-off between the storagél reports the experimentation results. Finally, con@asand
space reduction and the query response time. The redudtion Birther work are in Section VIII.
the storage space could increase the query response tiree. Th
research in OLAP focuses on the important efforts to make Il. RELATED WORK
methods more efficient in computation and representation of To tackle the issues of the tremendous number of aggre-
data cubes. The compact representation of data cubes showgdted tuples of a data cube due to the big volume of the
offer efficient query computation. fact table and the exponential number of cuboids [2][3B4][

many different approaches were proposed. In [6], instead ofach subscheme on the path. Each filter contains, at each time
computing the complete data cube, an I/O-efficient techeiquonly one tuple over the subscheme (associated with the)filter

based upon a multiresolution wavelet decomposition is tised and the current aggregate value of the measure (or a non
build an approximate and space-efficient representatidcheof aggregated mark). Before processing, the tuples of the fact
data cube. To answer an OLAP query, instead of computingable are sorted over the largest scheme of the path. When
the exact response, an approximate response is computed ading the new tuple of the fact table, if over a subscheme of
this representation. the currently processed path, the new tuple has the same valu

Iceberg data cube [7][8][9][10] is another approach todbuil as the tuple in the filter, then only the aggregate value of the

incomplete data cube. In this approach, instead of comg)utin_measure is updated. Otherwise, the current content of tke fil

all aggregated tuples, only those with support (or occueen is flushed out to the file of the corresponding cuboids on disk,

frequency) greater than certain thresholds are computed f(ﬁ]nd beforet the [‘e";’ tuple tp;]asses tintobthehfilter, t??hsubtdplet?
the data cube. For efficient computation, the pruning tephni '€ curreg Cot?] e? ' ovt?]r te ntexthsu bsit eme of the cuyredn
in the search space is enforced based on anti-monotone coprocessed pa (from the top to the bottom), is processed as

straints. This approach does not allow to answer all OLAPNE New tuple of the next subscheme filter. The same process
queries, because the data cube is partially computed. is recursively applied to the subsequent subscheme filters.

To be able to answer all OLAP queries, many researchergu To optimize the storage space of a cuboid, only aggregated

focused the efforts to find the methods to represent theeentir btuples with aggregate value of measure are directlgdtor

data cube with efficient computation and storage space. TQ. disk. Subtuples with non-aggregated mark are not stored
. comp ge space. 1§, represented by references to the (sub)tuples whereothe n
reduce the time computing and the storage space, severg\hjj

: . gregated tuples are originated. Consequently, to anawer
interesting data structures were c;reated. Dwart datatateic data cube query, by this representation, we may need tosacces
[11][12] is a special directed acyclic graph that allows ooty ¢ . ;

. . i 4 o many different stored cuboids.
the reduction of redundancies of tuple prefixes as the pmefix t
structure, but also the reduction of tuple suffixes by caahes The bottom-up methods [13][14][17][20] walk the paths
the same tuple suffixes, using pointers. In addition Dwarf ifom the bottom to the top in the complete lattice, beginning
a hierarchical structure that allows to store tuples and the With the empty node (corresponding to the cuboid with no
subtuples on the same path of the graph, using the special ké§jmension, for the first processed path). For each pattilet
value ALL. Using Dwarf data structure for data storage, thebe the scheme at the bottom node dhdthe scheme at of the
exponential size of data cube is reduced dramatically. ewe top node of the path (not necessary the bottom and the top of
this structure is not relational and then cannot be direstiyly ~ the lattice, as each node is visited only once). These msthod

in OLAP based on relational database tools (ROLAP). begin by sorting the fact table ovédiy and by this, the fact

. . . table is partitioned into groups ovéiy. To optimize storage
In ROLAP, data cube is represented in relational tablesgy,:e for each one of these groups, the following depth-firs
To be able to rapidly answer data cube queries, aggrega

i i lied.
tables can be precomputed and stored on disks. To optimize cursive proces.s ° _app © .
If the group is single (having only one tuple), then the

the storage space, the aggregated tuples that can be deduce \
from already stored tuples are not stored, but represenged PNy €lement of the group is represented by a reference to the

references fo stored tuples. The reduction of the redueanc cOTresponding tuple in the fact table, and there is no furthe
between tuples in cuboids is based on equivalence relatiof¥0Cc€ss: the recursive cuboid construction is pruned.

defined on aggregate functions [13][14] or on the concept of Otherwise, an aggregated tuple is created in the cuboid over
closed itemsets in frequent itemset mining [15][16]. T, and the group is sorted over the next larger sch&men

the path. The group is then partitioned into subgroups @yer

The computation of all cuboids is usually organized on thﬁ:or each subaroun oveF.. the creation of a real tuole or a
complete lattice of subschemes of the dimension schemesof t subgroup L P
éﬂference is similar to what we have done for a group @ver

fact table, in such a way the run time and the storage space ¢
be optimized by reducing redundancies [3][13][14][17]}18 When the recursive process is pruned at a ndgde® <

The computation can traverse the complete lattice in a topi < 7, Or reaches td;,, it resumes with the next group of the
down or bottom-up manner [9][19][20]. For grouping tuples partition overTy, until all groups of the partition are processed.
to create cuboids, the sort operation can be used to reagyaniThe construction resumes with the next path, until all paths
tuples: tuples are grouped over the prefix of their scheme andie complete lattice are processed, and all cuboids aré buil
the aggregate functions are applied to the measures. Bypgrou Note that in the above optimized bottom-up method, in
ing tuples, the fact table can be horizontally partitioneg@ich all cuboids, if references exist, they refer directly to tu-
partition can be fixed in memory, and the cube computatiorples in the fact table, not to tuples in other cuboids. This
can be modularized. method, named Totally-Redundant-Segment BottomUpCube

The top-down methods [19][20] walk the paths from the (TRS-BUQ), is repor';ed in [20]_as a method that dominates
top to the bottom in the complete lattice, beginning with ther hearly dominates its competitors in all aspects of the dat
node corresponding to the largest subscheme (the dimensiétbe problem: fast computation of a fully materialized cube
scheme of the fact table, for the first processed path). T§0mpressed form, incrementally updateable, and quickyquer
optimize the data cube construction, the cuboids over théESponse time.
subschemes on a path from the top to the bottom in the For updating a data cube with new tuples coming into
complete lattice can be built in only one lecture of the factthe fact table, we can find in [20] the implementation of
table. For this, an aggregate filter (accumulator), inted three update methods. (i) Merge method: build the data cube
with an empty tuple and a non aggregated mark, is used faof the new tuples and then merge it with the current data

cube. (ii) Direct method: update each cuboid of the currentlependencies between the cuboids in the representation tha
data cube with the new tuples. (iii) Reconstruction methodcan impact on query response time or on data cube update.
reconstruct the entire data cube of the fact table updatéd wi Moreover, in contrast to the existing approaches in whieh th
the new tuples. These methods are experimented on differenbmpact data cube is computed for a specific measure and a
approaches to incrementally build the data cube, whereizbe s specific aggregate function and, to improve the query respon

of new dataset grows gradually from 1% to 10% of the sizetime, the index can be created for data in the cuboids later,
of the current fact table. this approach prepares the data cube for any measure and any

In the above approaches, the traversal of the completBdgregate function by creating the cube of indexes.
lattice of the cuboids and the reduction of tuple redunddmcy
references imply the dependencies between cuboids. This ca lIl. - PRIME AND NEXT-PRIME CUBOIDS
impact on the query response time and/or on the data cube This section defines the main concepts of the present
update. Moreover, the representation of the entire dat@ cubapproach to compute and to represent data cubes.
is computed for a specific measure and a specific aggregate
function. When we need to have aggregate views on otheh. A structure of the power set

measures and/or on other aggregate functions, we need t0 o gata cube over a dimension scherfeis the set of

rebuild the data cube. To improve the query response time Qt5ids built over all subsets &, that is the power set of.
the update time, indexes can be created for cuboids. BeodiuseAS in most of existing work, attributes are encoded in intege

the tremendous number of aggregated tuples in the expahentio; s considers — {1,2,..,n}, n > 1. The power set of§
number of cuboids, the time consuming for index creation may.;,, pe recursively de7fin’ed’as ,follcTws.
much longer than the time for building the data cube.

1) The power set of, = () (the empty set) iF% = {0}.

A. Contributions 2) Forn > 1, the power set of5,, = {1,2,...,n} can
This paper is an extension of the paper [1] that presents a be recursively defined as follows:
S|m_ple and efficient approach to compute apq to represent the P,=P, U{XU{n} | X€P,_,} 1)
entire data cubes. The extension consists in: (i) developme
and improvement of the contents (points 1 to 4 in what P, is the union ofP,_; (the power set of,,_;) and
follows), and (ii) the implement of data cube update (point the set of which each element is got by addingo
5). each element of,,_;.
The efficient representation of data cube is not only a Let us call P, the first-half power sebf S5, and
compact representation of all cuboids of the data cube, lbat a the second operand d?, the last-half power sebf
an efficient method to get the entire cuboids from the compact S+

representation. The representation also allows to eftigien As the number of subsets iR, ; is 271, the number of
update the data cube when new data come into the fact tablgybsets in the first-half power set of, is 2"~!. As each

The main ideas and contributions of the proposed approacsubset in the last-half power set §f, is obtained by adding
are: elementn to a unique subset of the first-half power set%f
the number of subsets in the last-half power sebgfis also

—1. Every subset in the first-half power set does not contain
n, but every subset in the last-half power set does contain
Moreover, the subsets in the last-half power set can beetivid
4n two groups: one contains the subsets having element 1 and
he other contains the subsets without element 1.

1) Among the cuboids of a data cube, there are ones th
can be easily and rapidly get from the others, with no
important computing time. We call these others the
prime and next-prime cuboids.

2) The prime and next-prime cuboids are compute
and stored on disk using a prefix tree structure for
compact representation. To improve the efficiency OfExampIe 1:Forn =3, S5 = {1,2,3}, we have:
search through the prefix tree, this work integrates) R)
the binary search tree into the prefix tree. Bo={0}y A={0.{1}} P={0{1},{2},{1,2}};

3) To compute the prime and next-prime cuboids, this Ps = {0,{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3}}.
work proposes a running scheme in which the com- The first-half power set 085 is:
putation of the current cuboids can be speeded up by
using the cuboids that are previously computed. {0, {1}, {2}, {1,2}}.

4) Based on the prime and next-prime cuboids that are And the last-half power set of; is:
stored on disks, an efficient algorithm is proposed to {{3},{1,3},{2,3},{1,2,3}}.
retrieve all other cuboids that are not stored.

5) To update the data cube, we need only to update thg, Last-half data cube and first-half data cube

F”me dar;gl n%xtiprlmg cuboids. A{” defflc(ljent alg.orlthrtn Consider a fact table? (a relational data table) over a
or updating data cube IS presented and experimen e%limension schem§,, = {1,2,...,n}. In view of the first-half

To compute the aggregates, this approach does not need aod the last-half power set, suppose tat {z1, ..., z; } is an
sort the fact table or any part of it beforehand. To optimime t element of the first-half power set &, ({z1,...,2;} C Sp).
computation and the storage space, the approach is not baseet Y be the smallest element of the last-half power set of
on the complete lattice of subschemes of the dimension seheny,, that containsX. Then,Y = X U {n}. If the cuboid over
and does not use sophisticated techniques to implemert direY is already computed in the attribute order, ..., z;, n, then
or indirect references of tuples in cuboids. Hence, theeenar the cuboid overX = zy,...,x; can be computed by a simple

sequential reading of the cuboid ovEr to get data for the TABLE I. FACT TABLE R1
cuboid overX. So, we define the following concepts.

— We call a scheme in the last-half power seprme Rowd A B C D | M
schemeand a cuboid over a prime schemepdame cuboid Zg g; gg gg m
Note that all prime schemes contain the last attributand bl ol di| mi
any scheme that contains attributdés a prime scheme.

al bl c¢2 di| m3
— For efficient computing, the prime cuboids can be com- 803 2 & m

puted by pairs. Such a pair is composed of two prime cuboids.

The scheme of the first one has attributand the scheme of

the second one is obtained from the scheme of the first one

by deleting attributel. We call the second prime cuboid the | a3

g b wWwN
Q
=y

. X 1
next-prime cuboid a|

— The set of all cuboids over the prime (or next-prime)

schemes is called théast-half data cube The set of all bl b2
remaining cuboids is called thirst-half data cube In this 2 BRI
approach, the last-half data cube is computed and stored or | | b3
disks. Cuboids in the first-half data cube are computed as cl c2 |
gueries based on the last-half data cube. | ., W2 2
c2
IV. INTEGRATED BINARY SEARCH PREFIX TREE a1 d2
d3

The prefix tree structure offers a compact storage for tuples
the common prefix of tuples is stored once. So, there is no
redundancy in storage. Despite the compact structure of the Figure 1. A binary search prefix tree
prefix tree, if the same prefix has a large set of different
suffixes, then the time for searching the set of suffixes can
be important. To improve the search time when building the
prefix tree, this work proposes to integrate the binary $earc
tree into the prefix structure. The integrated structurieda
the binary search prefix tree (BSPTiy used to store tuples of
cuboids. With this structure, tuples with the same prefix are (a2, b2, c2, d2)
stored as follows: (a2, b3, 2, d3)

— The prefix is stored once. The BSPT is saved to disk with the following format:
— The suffixes of those tuples are organized in siblings and jevel : suf fix : ltid
stored in a binary search tree.

Precisely, in C language, the structure is defined by :

dl

(a1, bl, c1, d1)
(a1, bil, c2, d1)
(@2, bl, c2, d2)

where
— level is the length of the prefix part that the path has in
typedef struct bsptree Bsptree; // Binary search prefix tree common with its left neighbor,

struct bsptre¢ Elt data; /| data at a node — suffix is tuple (a list of dimension values) and,
Ltid *Itid; /I list of Rowlds — Itid is a list of tuple identifiers (Rowld).
Bsptree *son, *Isib, *rsib;}; Cuboids are built using the BSPT structure. The list of

Rowlds associated with the last node of each path allows
the aggregate of measures. For example, with the fact table
in Table I, the cuboid ovedBCD is saved on disk as the

whereson, [sib, andrsib represent respectively the son, the
left and the right siblings of nodes. The fieldd is reserved
for the list of tuple identifiers RowId) associated with nodes.

For efficient memory usdyid is stored only at the last node 0OWiNg.

of each path in the BSPT. O:alblcldl:3
With this representation, each binary search tree contains 2:¢2 dl:4

all siblings of a node in the normal prefix tree. 0:a2 bl ¢2 d2: 1

Example 2: 0:a3b2c2d2:2

Consider Table | that represents a fact table R1 over the 1:03 ¢2d3:5
dimension schemd BC'D and a measur&{. Fig. 1 represents) .
the BSPT of the tuples over the scheM&CD of the fact A. Insertion of tuples in a BSPT
table R1, where we suppose that with the same letteif The following algorithm, nameduple2Ptree defines the
i < jthenzi < xj, e.g.,al < a2 < a3. In this figure, the method to insert tuples into a BSPT, while maintaining the
continuous lines represent the son links and the dashes lIN@SPT structure.
represent the Isib or rsib links.

In each binary search tree of Fig. 1, if we do the depth_AIgorithm Tuple2Ptree: Insert a tuple into a BSPT.

first search in in-order, we can get tuples in increasing rordelnput: A BSPT represented by node, a tupleidata and its
as follows: list of Rowlds ti.

Output: The treeP updated withidata andlti.
Method:
If P is null then
create P with P>data = head(ldata);
P->son = P>>Isib = P->rsib = NULL;
if queue(ldata) is null then B-ltid =lti;
else P=son = Tuple2Pree(P>son, queue(ldata), Iti);
Else if P=>data > head(ldata) then
P->Isib=Tuple2Ptree(P>Isib, Idata,lti);
else if P>data < head(ldata) then
P->rsib=Tuple2Ptree(P>rsib, Idata,lti);
else if queue(ldata) is null then
P->Itid = append(P=>ltid, Iti);
else P>son = Tuple2Ptree(P>son, queue(ldata), Iti);
return P;

In the Tuple2Ptree algorithnkead(Idata) returns the first

element ofldata, queue(ldata) returns the queue dfidata

after removinghead(ldata), and append(P->lItid,lti) adds

the listl¢: to the list of Rowlds associated with node

B. Grouping tuples using binary prefix tree

To create the BSPT of a table of tuples where each one has,

of prime and next-prime cuboids. To control the computation
we use:

(i) A list to keep track of the generated prime schemes.
This list is called theunning schemand denoted by:S and,

(ii) A current scheme, denoted p, that is set to a prime
scheme that is currently considered 6. From the current
scheme, the further pairs of prime and next-prime cuboids ar
generated, based on the cuboid over the current scheme.

Through the computation of the last-half data cube, after
the generation of the first pair of prime and next-prime cdbpi
the dimension schemg is the first prime scheme added into
RS and ¢S is initialized to S. Then, for each dimensiod,

d # 1 andd # n, the prime schemeS — {d} is generated. If

¢S —{d} is not yet inRS, then it is appended t&®S and we
compute the pair of prime and next-prime cuboids, one over
¢S —{d} and the other ovetS — {1, d}, based on the cuboids
over ¢S. When all dimensions! € ¢S,d # 1,d # n are
considered¢sS is set to the next scheme RS for generating
new pairs of prime and next-prime cuboids. The process ends
when all prime schemes of siZze> 2 in RS are treated.

We associate each prime scheMén RS with information
that allows to retrieve the pairs of prime cuboids overand
X —{1}. This is not only necessary when computing the last-
half data cube, but also when restoring the entire data cube.

More formally, we use the following algorithm, named
stHal fCube, for computing the last-half data cube.

a list of Rowldsliti, we use an algorithm naméihble2Ptree

This algorithm allows to group the tuples over the dlmenS|o_nAlgorithm LastHalfCube
scheme of the table, hence allows to create the corresppndin

cuboid. As nodes corresponding to each attribute of tuple§Put: A fact table R over scheme S of dimensions.
are organized in binary search tree structures, we can get ttfDutput: The last-half data cube dt and the running scheme
cuboid with groups of tuples ordered in the increasing order RS.

Method:

0) Initialize the listRS to emptyset;

1) Append S to th&s;

2) Generate two prime and next-prime cuboids over S and
S - {1}, respectively, using algorithm Table2Tree and R;

3) Set ¢S to the first scheme RS; // ¢S: current scheme

4) While ¢S has more than 2 attributes do

5) For each dimension d in cS,#d 1 and d# n, do

6) Build a subscheme scS by deleting d from cS;

7) If scS is not yet irRS then append scS t&S and let

Algorithm Table2Ptree: Build a BSPT for a relational table.
Input: A table R in which each tuple has a list of tids:.
Output: The BSPTP for R
Method:

Create an empty BSPT P;

For each tuple Idata in R with its list of tids Iti do

P = Tuple2Ptree(P, Idata, Iti);
done;
Return P;

V. THE LAST-HALF DATA CUBE REPRESENTATION

This section presents a method to build the last-half datg)
cube. It also shows how the data cube is represented by the
last-half data cube and how the entire data cube can beedstor9)
from this representation.

A. Computing the last-half data cube
Let S = {1,2,...,n} be the set of all dimensions of the

Cubo be the already computed cuboid over cS;
Using Table2Ptree and Cubo to generate two
cuboids over scS and scY1}, respectively;

done;

10) Set cS to the next schemeRS;
11) done;
12) ReturnRS;

fact table. To compute all prime and next-prime cuboids ef th example 3: An example of running scheme.

last-half data cube, we process as follows:

Table 1l

shows the simplified execution of the

— Based on the fact table, we begin by computing the firs{ 5stHalfCube algorithm on a fact table over the dimension

pair of prime and next-prime cuboids, one oeand the other

schemeS = {1,2,3,4,5}. In this table, only the prime

over S — {1}. and the next-prime (NPrime) schemes of the cuboids
— In the sequence, based on the previously computed paicomputed by the algorithm are reported. The prime schemes
of prime and next-prime cuboids we compute the other pairgppended to the Running Schem® during the execution

of LastHalfCube are in the columns named Prime/RS. The 3) F: A relational table overRowld, My, ..., M, that
first prime schemes are in the first column Prime/RS, the nextepresents the measures associated with each tupke of

ones are in the second column Prime/RS, and the final ones Clearly, such a representation reduces about 50% space of

are in the third column Prime/RS. The final state ®§ is
{12345, 1345, 1245, 1235, 145,135,125, 15}. In Table Il, the

schemes marked with x (e.g., 145x) are those already adde

to RS and are not re-appended ItS.

TABLE Il. GENERATION OF THE RUNNING SCHEME OVER
S =1{1,2,3,4,5}.
Prime NPrime Prime NPrime Prime NPrime
RS RS RS
12345 2345
1345 345
145 45
15 5
135 35
15x
12 45 2 45
1 45x
125 25
15x
1235 235
1 35x
1 25x

Proof of correctness and soundnesdo prove the correctness

the entire data cube, as it represents the last-half dat ioub
tge BSPT format.

C. Computing the first-half data cube

In this subsection, we show how the cuboids of the first-
half data cube are computed based on the last-half data cube.

Let S = {1,2,...,n} be the dimension scheme of the data
cube andX = {z;1,...,z;;} be the scheme of a cuboid in the
first-half data cube that we need to retrieve. The siz&ab
k (k <n,n ¢ X); nis the size ofS and also the last attribute
of S.

Let C be the stored cuboid ovef U{n} (C is in the last-
half data cube)C' is a prime cuboid ifX contains attribute
1, a next prime cuboid, if not. Remind from Section IV that a
tuple of a prime or next-prime cuboid is stored on disk in the
BSPT format:

level : suf fix : ltid

By BSPT structure, the tuples @ that have the same
prefix over X are already regrouped together whéh is
stored on disk. For each such a group, we take the prefix

and soundness of the LastHalfCube algorithm, we only need tand the collection of all tuple identifiers (Rowld) in thetsis

show that for a fact tabl& over a schemé& of n dimensions,
S ={1,2,...,n}, the LastHalfCube algorithm generat&s
with 2"—2 subschemes containiny and » as the first and

of identifiers associated with these tuples to create a decor
(an aggregated tuple) of the cuboid ov&r More formally,
to build the cuboid overX, we use the following algorithm

the last attributes. For this, we can see that all subschememmedAggregate-Projection

appended ta?S havel as the first attribute and as the last
attribute. So, we can forgétandn from all those subschemes.

Algorithm Aggregate-Projection

Therefore, we can consider that the first subscheme addd@put: The representatio(S, LH, I') of a data cube over a

to RS is 2,...,n — 1. Over2,....n — 1, we have only one
subscheme of size — 2 (02:22 =1). In the loop For at point
5 of the LastHalfCube algorithm, alternatively each attré

dimension schemé& = {1,2,....n} and a scheme of size
k, such thatn ¢ X.

Output: The cuboid overX of the data cube represented by

from 2 ton — 1 is deleted to generate a subscheme of siz RS, LH, F).

n — 3. By doing this, we can consider as, in each iteration
we build a subscheme over— 3 different attributes selected

amongn — 2 attributes. So, we build”~3 subschemes. So

on, until the subschemél, n} (corresponding to the empty

scheme after forgetting andn) is added toRS. We have:

CP24Cn 3 4. +C0 , =272
For each of thes@”~! prime schemes, the LastHalfCube
algorithm also computes the corresponding next-primeraehe

By adding the2”—2 corresponding next-prime schemes, we

have 2"~ different subschemes. Thus, the LastHalfCube alor each new recordevel

gorithm computef™~! prime and next-prime schemes (and
cuboids).

B. Data Cube representation

For a fact table R over a dimension schemé&
{1,2,...,n} with measuresMy, ..., My, the data cube oRR
is represented byRS, LH, F), where

1) RS is the running scheme, i.e., the list of all prime

schemes ovef. Each prime scheme has an identifier number
that allows to locate the files corresponding to the prime and

next-prime cuboids in the last-half data cube.
2) LH: The last-half data cube of which the cuboids are

precomputed and stored on disks using the format to store the

BSPT.

'Method:

Let C' be the prime cuboid oveK U {n};
/I C is precomputed and stored ihH .

Letlevel : suf fiz,t(n) : itid be the 1st record irC;
/I t(n): the tuple value at attributer. As the 1st record irC,
/I we havelevel = 0 and suf fiz is a tuple of sizek.
Sett. = suf fiz;ltid,. = ltid,
Il (t. : ltid.): the record currently built for the cuboid oveY
w b SUS fiTy, ty(n) @ ltidy,
sequentially read irC' do

If level,, > k, then appendtid,, to the end oftid,;

/I case the new tuple @' has the same prefix as

/I the tuple currently built.

Else

Write ¢ : Itid, to disk as an aggregated tuple of
the cuboid overX;

Update the elements of the tuple from rang
level,, + 1 to rang k, with the corresponding
attribute values of the tupleuf fix,, and

Re-initializelti. to ltid,,;
done.

D. Querying data cubes cube. Moreover, as we do not walk the complete lattice of

In contrast to existing approaches, the present approaéﬁe cuboids in the data cube, we can update each cuboid
does not compute the representation of the data cube for igdependently.
specific measure, neither for a specific aggregate fundbian, The present work has implemented the update by the Direct
it computes the representation that is ready for the cortipnpta method. For this, the cuboids of the current last-half data
on any measure and any aggregate function. The last-half dacube are restored from disk to main memory, in the binary
cube is in fact the collection of index tables of tuples of thesearch prefix tree structure. For each such a restored hee, t
cuboids in the last-half data cube. We can get the cuboidaver projection of new data on the scheme of the cuboid stored in
schemeX with a specific measur#/ and a specific aggregate the tree is inserted into the tree. Precisely, we use theviolly
function g, based on the representation in Subsection V-Balgorithm, named.astHalfCubeUpdateto update the last-half
by slightly modifying the Aggregate-Projection algorithithe cube.
modified algorithm is namedggregate-Query

: Algorithm LastHalfCubeUpdate: Update the last-half data
Algorithm Aggregate-Query

. cube with new data tuples.
Input: The representatioqRS, LH, I) of a data cube over a |npyt: The representatiofRS, LH, F) of a data cube, where
dimension schemé& = {1,2,...,n} and a scheme&X' of size pg s the running schemd, H the last-half data cubéy the

k <n, a measurel/ and an aggregate function current fact table, and a new fact taliler'.
Output: The cuboid overX computed forg and M. Output: The updated representatiofRS, LH',F U NF)
Method: where LH' is the last-half data cube of the updated fact table
If n € X then FUNF.
Let C be the prime cuboid LH, over X; Method:
For each record(level : suf fix : ltid) € C do, For eachSch in the running schem&S do
Let be the tuple built oricvel and suf fix; 1) From the last-half cubeLH, restore the prime cuboid
Let Q2 be the set of values of the measuie associated withSch in a BSPT:

computed oritid and the relational tablef;

Apply g to ©; print (¢ : g(Q)); 2) For each tuplet of the new fact tableNVF, insert the

restriction oft on Sch (i.e., t[Sch]) into the BSPT of the prime

Elsedone, cuboid using the Tuple2Ptree algorithm;
Let C be the prime cuboid ovek U {n}; 3) Save the BSPT to disk;]]
Let (level : suf fiz,t(n) : ltid) be the 1st record irC; 4) From the last-half cubd H, restore the next-prime cuboid
Sett, = suf fix; ltid, = ltid; associated withSch — {1} in a BSPT;
For each new recordlevel,, : suf iy, ty,(n) : ltidy,) 5) For each tuplet of the new fact table NF, insert the
sequentially read irC' do restriction oft on Sch— {1} (i.e.,t[Sch—{1}]) into the BSPT
If level,, > k then appendtid,, to the end ofitid,; of the next-prime cuboid using the Tuple2Ptree algorithm;
Else, 6) Save the BSPT to disk;
Let 2 be the set of values of the measue done.
computed oritid. and the relational tabler;
Apply g to Q; print (t. : g(Q)); VIlI. EXPERIMENTAL RESULTS
Update the elements of the tuplg from rang The present approach to represent and to compute data
level,, + 1 to rang k, with the corresponding cubes is implemented in C and experimented on a laptop with
attribute values of the tupleuf fiz,, and 8 GB memory, Intel Core i5-3320 CPU @ 2.60 GHz x 4, 188
Re-initializelti. to ltid.; Go Disk, running Ubuntu 12.04 LTS. To get some ideas about
done. the efficiency of the present approach, we recall here some
experimental results in [20] as references. The experisnient
VI. UPDATING DATA CUBES [20] were run on a Pentium 4 (2.8 GHz) PC with 512 MB

For updating a data cube with new tuples coming into thememory under Windows XP.
fact table, we can have three data cube update methods.gi) Th For greater efficiency, in the experiments of [20], the
Merge method builds the data cube of the new tuples and thedimensions of the datasets are arranged in the decreasiag or
merge it with the current data cube. (i) The Direct methodof the attribute domain cardinality. The same arrangement i
updates each cuboid of the current data cube with the newone in our experiments. Moreover, as most algorithms stldi
tuples. (iii) The Reconstruction method reconstructs tiiére& in [20] compute condensed cuboids, computing query in data
data cube of the fact table updated with the new tuples. cube needs additional cost. So, the results are reportedoin t

In the present approach, a data cube is represented H@rts: computing the condensed data cube and querying data
its last-half. When new data coming into the fact table, tocube. The former is reported with the construction time and
update the data cube, we need only to update its last-halftorage space and the latter the average query response time
The three methods of data cube update can be applied to The work [20] has experimented many existing and
the representation by the last-half data cube. In particthe well known methods for computing and representing
Merge method and the Direct method can be more efficientlata cube as Partitioned-Cube (PC), Partially-Redundant-
with the last-half data cube representation: we must on\Segment-PC (PRS-PC), Partially-Redundant-Tuple-PC {PRT
merge or access to a half number of cuboids of the dat®C), BottomUpCube (BUC), Bottom-Up-Base-Single-Tuple

(BU-BST), and Totally-Redundant-Segment BottomUpCube
(TRS-BUC). The results were reported on real and synthetic
datasets. For the present work, we report only the expetahen

TABLE Ill. EXPERIMENTAL RESULTS IN [20]

CovType

results on two real datasets CovType [22] and SEP85L [23]. Algorithms | Storage space __Construction ime __avg QRT.
By reporting these results, we do not want to really compare PRF}_CPC *;172-25 gbb ijgg see
the present ap_p_roach to TRS-BUC or others, as we do not have PRS-PC #22 Gb 1200 sec 3.5 sec
sufficient conditions to implement and to run these methads o BSLéCS . #;12255 ésbb 23%%0 sec 2 sec
H : - . sec
the same system and machine. Moreover, in those methods, t_h_e BU-BST+ 412 Gb 200 soc 13 sec
data cubes are computed for a specific measure and a specific TRS-BUC #0.4 Gb 300 sec 0.7 sec
aggregate function, whereas in the present approach, the da —
cube are prepared for any measure and any aggregate function Algorithms | Storage Space — Construcion fime — avg ORT
In fact, for each tuple in a cuboid, the present approach PC #5.1Gb 300 sec
i i PRT-PC #3.3 Gb 1150 sec
computes all Rowlds of the fact table that are associateldl wit PRS.PC g ch 1100 oe 19 sec
the tuple. Hence, we cannot compare the present approdth wit BUC #5.1 Gb 1600 sec 11 sec
those methods, on the run time and the storage space. BU-BST #3.6 Gb 1200 sec
. BU-BST+ #2.1 Gb 1300 sec 0.98 sec
Apart CovType and SEP85L, the present approach is also TRS-BUC #1.2 Gb 1150 sec 0.5 sec

experimented on two other datasets that are not used in
[20]. These datasets are STCO-MR20AQ_MO [24] and

OnlineRetai25][26]. TABLE IV. EXPERIMENTAL RESULTS OF THIS WORK ON CovType

CovType is a dataset of forest cover-types. It has ten AND SEP85L
dimensions and 581,012 tuples. The dimensions and their
cardinality are: Horizontal-Distance-To-Fire-Points,8@&7), CovType
Horizontal-Distance-To-Roadways (5,785), Elevatiord{8), TR Cpe—oge space Hunfime avg ORT
Vertical-Distance-To-Hydrology (700), Horizontal-Dasice- First-Half Cube 6,2 Gb 435 sec
To-Hydrology (551), Aspect (361), Hillshade-3pm (255), Data Cube 132 Gb 1453sec 0.3 sec
Hillshade-9am (207), Hillshade-Noon (185), and Slope .(67) SEPS5L

SEPS85L is a weather dataset. It has nine dimensions TR e age sbace Runfime avg QRT
and 1,015,367 tuples. The dimensions and their cardinality First-Half Cube 2.6 Gb 172 sec
are: Station-Id (7,037), Longitude (352), Solar-Altitugler9), Data Cube 5.4 Gb 616 sec 0.34 sec

Latitude (152), Present-Weather (101), Day (30), Weather-
Change-Code (10), Hour (8), and Brightness (2).

STCO-MR2010AL_MO is a census dataset on population as we do not compute the condensed cuboids, but only
of Alabama through Missouri in 2010, with 640586 tuples compute the last-half data cube and use it to represent tae da
over ten integer and categorical attributes. After tramsfog cype, we can consider that the last-half data cube correspon
categorical attributes (STNAME and CTYNAME), the datasetsomehow to the (condensed) representations of data cube in
is arranged in decreasing order of cardinality of its aill®s ne other approaches, and computing the first-half data cube
as follows: RESPOP (9953), CTYNAME (1049), COUNTY qrresponds to querying data cube. In this view, the average
(189), IMPRACE (31), STATE (26), STNAME (26), AGEGRP query response time corresponds to the average run time for
(7), SEX (2), ORIGIN (2), SUMLEV (1). computing a cuboid based on the precomputed and stored

OnlineRetall is a data set that contains the transactionsuboids. That is, the average query response time for SEP85L
occurring between 01/12/2010 and 09/12/2011 for a UK4ds 172s/512 = 0.34 second and for CovType 435s/1024 = 0.43
based and registered non-store online retail. This dateset second, because the cuboids in the last-half data cube are
incomplete data, integer and categorical attributes. rAfegi- precomputed and stored, only querying on the first-half data
fying, transforming categorical attributes into integttributes, cube needs computing.

for the experiments, we retain 393127 complete data tuples .
and the following ten dimensions ordered in their cardtgali Though the compactness of the data cube representation

as follows: CustomerlID (4331), StockCode (3610), Unit€ric by the present approach is not comparable to the compactness

; - offered by TRS-BUC, it is in the range of other existing
(Hggfr) (%amﬁtﬁz(ig ;g/lnlgu;ga(f?z))’ Country (37), Day (31), methods. However, note that while the existing methodsestor

. . aggregated tuples (or references) with the values of afspeci
Table Il presents _the experimental results approxmatel)éggregate function of a specific measure, the present agproa
got from the graphs in [20], where "avg QRT" denotes thesiores aggregated tuples with lists of Rowlds that allow to
average query response time and “Construction time” denote;ccess to all measures of the fact table. It is similar for the
the time to construct the (condensed) data cube. Howew@r, (2 yp, time to build the last-half data cube of CovType. However
did not specify whether the construction time includes et the ryn time to build the entire (not only the last-half) detbe
to read/write data to files. of SEP85L seems to be better than all other existing methods.
Table IV reports the results of the present work on CovTypeOn the average query response time, it seems that the present
and SEPS85L, where the term “run time” means the time fromapproach offers a competitive solution, because queryatg d
the start of the program to the time the last-half (or first-cube is a repetitive operation and improving the averageyque
half) data cube is completely constructed, including tiheeti response time is one of the important goals of research @n dat
to read/write input/output files. cube.

TABLE V. EXPERIMENTAL RESULTS OF THIS WORK ON TABLE VIII. INCREMENTAL DATA CUBE UPDATING TIME
STCO-MR2010AL_MO AND OnlineRetail
| Covlype SEP85L STCO-M OnlineR
STCO-MR2010 AL_MO Tot-Tuples | 581012 1015367 640586 393127
Storage space Run time avg QRT
Last-Half Cube 3.4 Gb 740 sec Ratio 5%
First-Half Cube 3.2 Gb 209 sec 1st Part 551959 964596 608553 373469
Data Cube 6.6 Gb 949 sec 0.20 sec 2nd Part 29053 50771 32032 19658
Update Time 864 sec 331 sec 414 sec 348 sec
OnlineRetail
Storage space Run time avg QRT Ratio 11%
Last-Half Cube 3 Gb 426 sec Ist Part 522909 913831 576528 353814
First-Half Cube 2.4 Gb 185 sec 2nd Part 58103 101536 64507 39313
Data Cube 5.4 Gb 611 sec 0.18 sec Update Time 928 sec 372 sec 332 sec 369 sec
Ratio 25%
Ist Part 464809 812301 512478 314504
Table V reports the results of the present work on the ag%;g”ﬂme 9161523230 i‘l’gofei égglggc 37;26@;
datasets STCO-MR2018L _MO and OnlineRetail, where the
term “run time” has the same meaning as in Table IV. Ratio 43%
. 1st Part 406709 710771 448428 275194
Tables VI and VIl report the run time of the present ap- 2nd Part 174303 304596 192157 117933
proach for computing the cuboids with the aggregate funstio Update Time | 996 sec 470 sec 691 sec 417 sec
COUNT and SUM, respectively, on the four datasets CovType, Ratio 66%
SEP85L, STCO-MRZO]._O\L_MO and OnlineRetail. Each 1st Part 348609 609241 384378 235884
value in these tables is the total time in seconds for comguti 2nd Part 232403 406126 256207 157243
Update Time 1042 sec 515 sec 797 sec 441 sec

all cuboids in the corresponding part of the data cube. For
example, in the line COUNT Last-Half, we have the total
time for computing 256 cuboids of the last-half data cube of

SEPS85L for the COUNT function is 172 seconds. The totaltuples). The experimental results are reported in Tablds VI
time includes the computation time and the input/outpuetim and IX, where Update Time includes the time for restoring

for reading data and rewriting the results to disk. In additi

the current last-half data cube in main memory, the time for

COUNT Avg Time (or SUM Avg Time) is the average time updating it, and the time for writing the updated last-haibe
for building a cuboid for the aggregate function COUNT (or to disk. In addition, the lines Tot-Tuples, 1st Part, and Padt

SUM, respectively), based on the representati8s, LH, F').

represent respectively the numbers of tuples in the origina

For example, the average time for building a cuboid for thedataset, in the first part, and in the second part.
aggregate function COUNT on the dataset SEP85L is 326/512 Table IX represents the time saved by incremental update,

= 0.64 second.

TABLE VI. RESULTS ON AGGREGATE-QUERY FOR COUNT

in comparison with the time to rebuild entirely the lastfhal
data cube of the updated fact table. In Table IX,

— Rebuild Time is the time for rebuilding entirely the last-
half data cube of the updated fact table,

CovT SEP85L STCO-M OnlineR
COUNT LaSTRal | 4oy e e o e — 2%-Updt-Time is the time for incremental update of the
COUNT First-Half 442 sec 154sec 180sec 176 sec last-half data cube where% is the ratio of the size of the
COUNT Data Cube 889 sec 326 sec 375 sec 369 sec i i
COUNT Avg Time 0.87 sec 0.64 sec 0.37 sec 0.36 sec second part to the size of the first part and’

TABLE VIl. RESULTS ON AGGREGATE-QUERY FOR SUM

— Time Saving is the difference between Rebuild Time and
x%-Updt-Time.

All the times includes the computation time and the in-
put/output time, in seconds. Table IX shows that when the rat
of the size of the new fact table to the size of the current fact

CovTh SEP85L STCO-M OnlineR . . .
SO st e — T T eee——T0F s 7 e 00 sec. table varies fron5% to 25%, the incremental update is more
SUM First-Half 444sec 180sec 204sec 185 sec interesting. Afterward, it would be better to rebuild ealyr
SUM Data Cube 925 sec 375 sec 421 sec 386 sec _
SUM Aug Time 00 oo 073 e odlem 038 e the last-half data cube of the updated fact table.

VIIl. CONCLUSION AND FURTHER WORK

For experimenting the data cube update, this work uses the This work is an extension of [1] that represents a data
same four datasets. Each original dataset is divided int twcube by its last-half: the set of cuboids called prime (orthex
parts. The first part is used to create the last-half data cubgrime) cuboids. All other cuboids are computed by a simple
and the second part is used to update the last-half data culoperation, called the aggregate-projection, based thenh&ds
created on the first part. After the update, we have the samgata cube. The representation is reduced because only a half
last-half data cube as we have created the last-half dat culbf the data cube is stored using the binary search prefix tree
with the entire original dataset. By this way, we can compardBSPT) structure. Such a structure offers not only a compact
the time for incremental updating and the time for rebuildin representation but also an efficient search method. Buildin
the last-half data cube with the entire updated dataset. Tha cuboid in the last-half data cube is reduced to building a
ratio of the size of the second part to the size of the firsBSPT. The BSPT allows efficient group-by operation without
part varies in{5%, 11%, 25%, 43%,66%} (size in number of previous sort operation on tuples in the fact table or in ao

[7] K. S. Beyer, R. Ramakrishnan, “Bottom-up computation ofrspaand
iceberg cubes,” in Proceedings of the 5th ACM Internationakkshop
on Data Warehousing and OLAP, (SIGMOD), 1999, PhiladelpR&nn-

TABLE IX. TIME SAVING BY DATA CUBE UPDATE

[CovType SEP85L STCO-M OnlineR sylvania, USA, pp. 359-370.

ReBuild Time | 10I18sec 444 sec 740 sec 426 sec [8] J. Han, J. Pei, G. Dong, and K. Wang, “Efficient Computatioh
Iceberg Cubes with Complex Measures,” in Proceedings of Ol 2

5%-Updt-Time | 864 sec 331 sec 414 sec 348 sec ACM SIGMOD International Conference on Management of Dasant&

Time Saving | 154 sec 113 sec 326 sec 78 sec Barbara, California, USA, pp. 1-12.

119%-Updt-Time | 928 sec 372 sec 332 sec 369 sec [9] D. Xin, J. Han, X. Li, and B. W. Wah, “Star-cubing: compugirceberg

Time Saving [90sec 75 sec 208 sec 57 sec cubes by top-down and bottom-up integration,” in Proceesliofy the
29th International Conference on Very Large Data Bases (®).2003,

25%-Updt-Time | 962 sec 417 sec 582 sec 392 sec Berlin, Germany, pp. 476-487.

Time Saving | 56 sec 21 sec 158 sec 34 sec [10] Z. Shao, J. Han, and D. Xin, “Mm-cubing: computing icebenipes by

' factorizing the lattice space”, in Proceedings of the imional Con-

43%-Updt-Time | 996 sec 470 sec 691 sec 417 sec S .

Time Saving 22 sec 56 SoC 29 s6C 9s6c l‘ze()roezctra)por;]-s3c_|2e;§f|c and Statistical Database ManagemeSDB#),

66%-Updt-Time | 1042 sec 515 sec 797 sec 441 sec [11] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Motidis,

Time Saving | -24sec -71sec -57 sec -15 sec “Dwarf: shrinking the petacube,” Proceedings of the 2002MASIG-

MOD International Conference on Management of Data, Madison
Wisconsin, pp. 464-475.

Y. Sismanis and N. Roussopoulos, “The polynomial compyeod fully

. S . 12]
Each cuboid in the representation is in fact an index tablé materialized coalesced cubes,” in Proceedings of the 3Q#miational

in which tuples have a Iist of Rowlds referencing to tuples in conference on Very Large Data Bases (VLDB), 2004, Torontma@a,
the fact table. The experimental results show that the geera pp. 540-551.
time for computing the a cuboid with the aggregate functiong13] L. Lakshmanan, J. Pei, and J. Han, “Quotient cube: Hovwutorearize

COUNT and SUM based on this representation is among the semantics of a data cube,” in Proceedings of the 28thnimtienal
Conference on Very Large Data Bases (VLDB), 2002, Hong Kong,

the average time of the efficient methods. Moreover, based
on this representation, we can compute the cuboids for an
aggregate function and any measure, without rebuilding th
representation when we change the measure or the aggregate

function.

The experimental results of the incremental update on the
four real datasets, using the Direct method, show that the

%161

time saving, with respect to the Reconstruction method,
interesting when the ratio of the size of the new fact tabkéo
size of the current fact table varies frdits to 25%. When the

China, pp. 778-789.

4] L. Lakshmanan, J. Pei, and Y. Zhao, “QC-Trees: An Effit@ammary
Structure for Semantic OLAP,” Proceedings of the 2003 ACM I8@@D
International Conference on Management of Data, pp. 64-75.

A. Casali, R. Cicchetti, and L. Lakhal, “Extracting semias from data
cubes using cube transversals and closures,” in Proceedinthe 9th
ACM SIGKDD International Conference on Knowledge Discgvand
Data Mining (KDD), 2003, Washington, D.C., pp. 69-78.

A. Casali, S. Nedjar, R. Cicchetti, L. Lakhal, and N. Ntliy “Lossless
Reduction of Datacubes using Partitions,” Internatiormalrdal of Data
Warehousing and Mining (IJIDWM), 2009, Vol. 5, Issue 1, pp.3B-

[15]

ratio is greater thad0%, it would be better to rebuild entirely [17] w. wang, H. Lu, J. Feng, and J. X. Yu, “Condensed cube: ficiant

the last-half data cube of the updated fact table.

On the above experimental results, we can conclude that

the approach is interesting not only in computing time, asjer

space, and representation, but also interesting for cuepryi
and incremental update. As we can efficiently access to all

aggregated tuples in the data cube, it is interesting toystusl
application of this representation in data mining, in fafgr,
for classification or detection of anomalies.

REFERENCES

[1] V. Phan-Luong, “A Simple and Efficient Method for Computifizpta
Cubes,” in Proceedings of the 4th International Conferamc€ommuni-
cations, Computation, Networks and Technologies (INNOWyé&mber
15-20, 2015, Barcelona, Spain, pp. 50-55.

[2] S. Agarwal et al., “On the computation of multidimensiongbeegates,”
in Proceedings of the 22nd International Conference on Varge Data
Bases (VLDB), 1996, Mumbai (Bombay), India, pp. 506-521.

[3] V. Harinarayan, A. Rajaraman, and J. Ullman, “Implementiagaccubes
efficiently,” in Proceedings of the 1996 ACM SIGMOD, Monttea
Canada, pp. 205-216.

[4] S. Chaudhuri and U. Dayal, “An Overview of Data Warehogsiand
OLAP Technology,” SIGMOD Record Vol. 26, Issue 1, 1997, pp-7&..

[5] Y. Zhao, P. Deshpande, and J. F. Naughton, “An arraydbadgorithm
for simultaneous multidimensional aggregates,” in Procegdiof the
1997 ACM SIGMOD International Conference on Management abPa
Tucson, Arizona, USA, pp. 159-170.

[6] J. S. Vitter, M. Wang, and B. R. lyer, “Data cube approxiioat
and histograms via wavelets,” in Proceedings of the 7th matonal
Conference on Information and Knowledge Management (CIKND81
Bethesda, Maryland, USA, pp. 96-104.

approach to reducing data cube size,” in Proceedings ofntieenlational
Conference on Data Engineering (ICDE), 2002, pp. 155-165.

Y. Feng, D. Agrawal, A. E. Abbadi, and A. Metwally, “Raagcube:
efficient cube computation by exploiting data correlation Proceedings
of the International Conference on Data Engineering (IGCXB04, pp.
658-670.

K. A. Ross and D. Srivastava, “Fast computation of spdega cubes,”
in Proceedings of the 23rd International Conference on Varge Data
Bases (VLDB), 1997, pp. 116-125.

K. Morfonios and Y. loannidis, “Supporting the Data Guhifecycle:
The Power of ROLAP,” The VLDB Journal, July 2008, Vol. 17, Nb.
Springer-Verlag New York, Inc., pp. 729-764.

J. Gray et al., “Data Cube: A Relational Aggregation €per Gen-
eralizing Group-by, Cross-Tab, and Sub-Totals,” in Dateniktj and
Knowledge Discovery, 1997, Vol. 1, Issue 1, pp. 29-53, Klufeademic
Publishers, The Netherlands.

J. A. Blackard, “The forest covertype dataset,” ftjtp/ ics.uci. edu/
pub/machine-learning-databases/covtype, [retrievedil A3015].

C. Hahn, S. Warren, and J. London, “Edited synoptic dloe- ports
from ships and land stations over the globe,” http://caisd.ornl.gov/
cdiac/ndps/ndp026b.html, [retrieved: April, 2015].

“2010 Census Modified Race Data Summary File for Counties
Alabama through Missouri,” http://www.census.gov/pofresearch/
modified/STCO-MR2010AL _MO.csv, [retrieved: September, 2016].

“Online Retail Data Set” UCI Machine Learning Reposit
https://archive.ics.uci.edu/ml/datasets/Online+Refeetrieved: Septem-
ber, 2016].

D. Chen, S. Liang Sain, and K. Guo, “Data mining for theialretail
industry: A case study of RFM model-based customer segmentagiag
data mining,” Journal of Database Marketing and Customertestya
Management, 2012, Vol. 19, No. 3, pp. 197-208.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

