M. Fougère-danezan, S. Joly, A. Bruneau, X. F. Gao, and L. B. Zhang, Phylogeny and biogeography of wild roses with specific attention to polyploids, Ann. Bot, vol.115, pp.275-291, 2015.

D. Vries, D. P. Dubois, and L. , Rose breeding: past, present, prospects, Acta Hortic, vol.424, pp.241-248, 1996.

M. Martin, F. Piola, D. Chessel, M. Jay, and P. Heizmann, The domestication process of the modern rose: genetic structure and allelic composition of the rose complex, Theor. Appl. Genet, vol.102, pp.398-404, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00427137

C. C. Hurst, Notes on the origin and evolution of our garden roses, J. R. Hort. Soc, vol.66, pp.73-82, 1941.

M. Bendahmane, A. Dubois, O. Raymond, and M. L. Bris, Genetics and genomics of flower initiation and development in roses, J. Exp. Bot, vol.64, pp.847-857, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02647288

G. D. Esselink, M. J. Smulders, and B. Vosman, Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers, Theor. Appl. Genet, vol.106, pp.277-286, 2003.

A. Zharkikh, Sequencing and assembly of highly heterozygous genome of Vitis vinifera L. cv Pinot Noir: problems and solutions, J. Biotechnol, vol.136, pp.38-43, 2008.

K. Yokoya, A. V. Roberts, J. Mottley, R. Lewis, and P. E. Brandham, Nuclear DNA amounts in roses, Ann. Bot, vol.85, pp.557-561, 2000.

N. Nakamura, Genome structure of Rosa multiflora, a wild ancestor of cultivated roses, DNA Res, 2017.

H. Badouin, The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution, Nature, vol.546, pp.148-152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01603287

R. Vanburen, Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum, Nature, vol.527, pp.508-511, 2015.

S. Koren, Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res, vol.27, pp.722-736, 2017.

C. S. Chin, Phased diploid genome assembly with single-molecule real-time sequencing, Nat. Methods, vol.13, pp.1050-1054, 2016.

P. M. Bourke, Partial preferential chromosome pairing is genotype dependent in tetraploid rose, Plant J, vol.90, pp.330-343, 2017.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, vol.31, pp.3210-3212, 2015.

H. Iwata, The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry, Plant J, vol.69, pp.116-125, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01209893

S. Li, Inheritance of perpetual blooming in Rosa chinensis 'Old Blush' . Hortic, Plant J, vol.1, pp.108-112, 2015.

A. Mouradov, F. Cremer, and G. Coupland, Control of flowering time: interacting pathways as a basis for diversity, Plant Cell, vol.14, pp.111-130, 2002.

F. E. Vaistij, Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA, Proc. Natl Acad. Sci. USA, vol.110, pp.10866-10871, 2013.

H. Huo, S. Wei, and K. J. Bradford, DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways, Proc. Natl. Acad. Sci. USA, vol.113, pp.2199-2206, 2016.

Y. Han, Comparative RNA-seq analysis of transcriptome dynamics during petal development in Rosa chinensis, Sci. Rep, vol.7, p.43382, 2017.

J. Y. Gou, F. F. Felippes, C. J. Liu, D. Weigel, and J. W. Wang, Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor, Plant Cell, vol.23, pp.1512-1522, 2011.

M. M. Zvi, PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers, New Phytol, vol.195, pp.335-345, 2012.

K. Lin-wang, An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae, BMC Plant Biol, vol.10, p.50, 2010.

A. Aharoni, Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species, Plant Cell, vol.16, pp.3110-3131, 2004.

V. Shulaev, The genome of woodland strawberry (Fragaria vesca)

, Nat. Genet, vol.43, pp.109-116, 2011.

Z. X. Yu, Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors, Mol. Plant, vol.8, pp.98-110, 2015.

J. L. Magnard, Biosynthesis of monoterpene scent compounds in roses, Science, vol.349, pp.81-83, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01210018

O. R. , C. B. ;-c.l.-r.-and-m.-;-m, D. L. Verdenaud, M. Benhamed, M. P. et al., Verdenaud validated the assembly with Hi-C and genetic data. P.W. and A. Lemainque performed Illumina sequencing. A. Boualem and A. Bendahmane provided resequencing sequencing data, developed bioinformatics tools and assembled the PacBio homozygous genome. M. Benhamed and M

M. L. , -. , B. G. , Y. B. , O. R. et al., wrote the manuscript. References 29. Touraev, A. & Heberle-Bors, E. Microspore embryogenesis and in vitro pollen maturation in tobacco, Methods Mol. Biol, vol.111, pp.281-291, 1999.

F. Brioudes, A. M. Thierry, P. Chambrier, B. Mollereau, and M. Bendahmane, Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants, Proc. Natl. Acad. Sci. USA, vol.107, pp.16384-16389, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521824

G. Carrier, An efficient and rapid protocol for plant nuclear DNA preparation suitable for next generation sequencing methods, Am. J. Bot, vol.98, pp.13-15, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01506007

P. Vergne, Somatic embryogenesis and transformation of the diploid rose Rosa chinensis cv 'Old Blush' . Plant Cell Tissue Organ Cult, vol.100, pp.73-81, 2010.

S. Gnerre, High-quality draft assemblies of mammalian genomes from massively parallel sequence data, Proc. Natl. Acad. Sci. USA, vol.108, pp.1513-1518, 2011.

W. Zhu, Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid

, Genome Biol, vol.18, p.157, 2017.

C. Wang, Genome-wide analysis of local chromatin packing in Arabidopsis thaliana, Genome Res, vol.25, pp.246-256, 2015.

N. Servant, HiC-Pro: an optimized and flexible pipeline for Hi-C data processing, Genome Biol, vol.16, p.259, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01246671

K. C. Akdemir and L. Chin, HiCPlotter integrates genomic data with interaction matrices, Genome Biol, vol.16, p.198, 2015.

H. Tang, ALLMAPS: robust scaffold ordering based on multiple maps, Genome Biol, vol.16, p.3, 2015.

C. S. Chin, Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat. Methods, vol.10, pp.563-569, 2013.

B. J. Walker, Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement, PLoS One, vol.9, p.112963, 2014.

G. Benson, Tandem repeats finder: a program to analyze DNA sequences, Nucleic Acids Res, vol.27, pp.573-580, 1999.

H. Li and R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform, Bioinformatics, vol.26, pp.589-595, 2010.

S. Foissac, Genome annotation in plants and fungi: EuGene as a model platform, Curr. Bioinform, vol.3, pp.87-97, 2008.

P. Schläpfer, Genome-wide prediction of metabolic enzymes, pathways, and gene clusters in plants, Plant Physiol, vol.173, pp.2041-2059, 2017.

, Letters NaTURE GENETiCs

L. Cottret, MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks, Nucleic Acids Res, vol.38, pp.132-137, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00690651

, UniProt: the universal protein knowledgebase, The UniProt Consortium, vol.45, pp.158-169, 2017.

Y. Zheng, iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases, Mol. Plant, vol.9, pp.1667-1670, 2016.

X. Dai, S. Sinharoy, M. Udvardi, and P. X. Zhao, PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool, BMC Bioinformatics, vol.14, p.321, 2013.

R. D. Finn, 2017: beyond protein family and domain annotations, vol.45, pp.190-199, 2017.

T. Flutre, E. Duprat, C. Feuillet, and H. Quesneville, Considering transposable element diversification in de novo annotation approaches, PLoS One, vol.6, p.16526, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00568705

C. Hoede, PASTEC: an automatic transposable element classification tool, PLoS One, vol.9, p.91929, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639360

J. Jurka, Repbase Update, a database of eukaryotic repetitive elements, Cytogenet. Genome Res, vol.110, pp.462-467, 2005.

H. Quesneville, Combined evidence annotation of transposable elements in genome sequences, PLOS Comput. Biol, vol.1, pp.166-175, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00000104

D. Formey, The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome, Genome Biol, vol.15, p.457, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02635888

A. Kozomara and S. Griffiths-jones, miRBase: annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res, vol.42, pp.68-73, 2014.

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, pp.841-842, 2010.

K. L. Pearson, On lines and planes of closest fit to systems of points in space, Lond. Edinb. Dublin Philos. Mag. J. Sci, vol.2, pp.559-572, 1901.

T. Jombart, adegenet: a R package for the multivariate analysis of genetic markers, Bioinformatics, vol.24, pp.1403-1405, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00428105

J. Salse, Ancestors of modern plant crops, Curr. Opin. Plant Biol, vol.30, pp.134-142, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02285544

R. P. Adams, Identification of Essential Oil Components By Gas Chromatography/Mass Spectrometry, 2007.

A. Veluchamy, LHP1 regulates H3K27me3 spreading and shapes the three-dimensional conformation of the arabidopsis genome, PLoS One, vol.11, p.158936, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01602849

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

Y. Zhang, Model-based analysis of ChIP-Seq (MACS), Genome Biol, vol.9, p.137, 2008.

C. Zang, A clustering approach for identification of enriched domains from histone modification ChIP-Seq data, Bioinformatics, vol.25, pp.1952-1958, 2009.

S. Heinz, Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities, Mol. Cell, vol.38, pp.576-589, 2010.

T. Ye, seqMINER: an integrated ChIP-seq data interpretation platform, Nucleic Acids Res, vol.39, p.35, 2011.

M. Krzywinski, Circos: an information aesthetic for comparative genomics, Genome Res, vol.19, pp.1639-1645, 2009.

L. Shen, N. Shao, X. Liu, E. Nestler, and . Ngs, plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases, BMC Genomics, vol.15, p.284, 2014.

A. Dubois, Tinkering with the C-function: a molecular frame for the selection of double flowers in cultivated roses, PLoS One, vol.5, p.9288, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521642

A. Dubois, Genomic approach to study floral development genes in Rosa sp, PLoS One, vol.6, p.28455, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00753396

J. Marcial-quino, Stem-loop RT-qPCR as an efficient tool for the detection and quantification of small RNAs in Giardia lamblia, Genes (Basel), vol.7, p.131, 2016.

, For all ChIP-seq data: a. Confirm that both raw and final processed data have been deposited in a public database such as GEO. b. Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks

, ChipSeq raw data have been deposited under SRA numbers SRR6167310, SRR6167311, SRR6167312 and SRR6167313. Processed data can be accessed through genome browser

, RcHt_17_H3K9ac_mark_Petal.R1.fastq.gz RcHt_17_H3K9ac_mark_Petal.R2.fastq.gz RcHt_17_H3K9Ac_Input_Petal.R1.fastq.gz RcHt_17_H3K9Ac_Input_Petal.R2.fastq.gz RcHt_17_H3K27me3_mark_Petal.fastq.gz RcHt_17_H3K27me3_Input_Petal.fastq.gz

, Provide a link to an anonymized genome browser session (e.g. UCSC), if available. The genome and data can be accessible for the

, Homozygous genome : H3K9Ac mark, mean coverage : 5.2x,; H3K9Ac input, mean coverage : 15x