H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 0191.
DOI : 10.1109/TAC.1974.1100705

M. Dickinson, Haltere-mediated equilibrium reflexes of th fruit fly
DOI : 10.1098/rstb.1999.0442

URL : http://europepmc.org/articles/pmc1692594?pdf=render

M. Egelhaaf, R. Kern, H. G. Krapp, J. Kretzberg, R. Kurtz et al., Neu- 194 ral encoding of behaviourally relevant visual-motion information in the fly, Trends in 195 neurosciences, pp.96-102, 2002.

F. Expert and F. Ruffier, Flying over uneven moving terrain based on optic-flow 197 cues without any need for reference frames or accelerometers. Bioinspiration & Biomimet- 198 ics, pp.26003-199, 2015.
DOI : 10.1088/1748-3182/10/2/026003

URL : http://iopscience.iop.org/article/10.1088/1748-3182/10/2/026003/pdf

G. S. Fraenkel and D. L. Gunn, The orientation of animals: Kineses, taxes and compass 200 reactions, 0201.

L. J. Goodman, The Role Of Certain Optomotor Reactions In Regulating Stability, p.202

R. Goulard, A. Julien-laferriere, J. Fleuriet, J. Vercher, and S. Viollet, Behavioural evidence for a visual and proprioceptive control of head roll in hoverflies (Episyrphus balteatus), Journal of Experimental Biology, vol.218, issue.23, pp.3777-3787, 2015.
DOI : 10.1242/jeb.127043

URL : https://hal.archives-ouvertes.fr/hal-01414097

R. Goulard, J. Vercher, and S. Viollet, To crash or not to crash: how do hover- 208 flies cope with free-fall situations and weightlessness, Journal of Experimental Biology, vol.209, issue.16, pp.2192497-2503, 2016.
DOI : 10.1242/jeb.141150

URL : http://jeb.biologists.org/content/jexbio/219/16/2497.full.pdf

R. Goulard, J. Vercher, S. Viollet-]-r, . Hengstenberg-]-r, and . Hengstenberg, Modeling visual-based pitch, lift and speed 211 control strategies in hoverflies Localization and Orientation in Biology and Engineering. Lectures Notes 213 in Computer Science Mechanosensory control of compensatory head roll during flight in the 215 blowfly Calliphora erythrocephala, 12] R. Hengstenberg. Visual Motion and its Role in the Stabilization of Gaze, pp.212-121, 1984.
DOI : 10.1371/journal.pcbi.1005894

URL : http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005894&type=printable

R. Hengstenberg-]-e, H. Horn, G. Lang, . Horridge, Y. Mimura et al., Controlling the fly's gyroscopes Positional Head Reflexes and the Role of the Prosternal Organ 221 in the Walking Fly, Calliphora erythrocephala Fly photoreceptors-ii. spectral and polarized 224 light sensitivity in the drone fly eristalis, Proc. R. Soc. Lond. B Nonlinear Integration of Visual and Haltere Inputs in Fly 227, pp.219757-758, 1975.

K. Hidehiko, A. Inagaki, K. Kamikouchi, and . Ito, Methods for quantifying simple 229 gravity sensing in drosophila melanogaster, Nature protocols, vol.520, issue.1, pp.230-231, 2010.

]. H. Krapp, B. Hengstenberg, ]. Kress, M. M. Egelhaaf-]-m, H. G. Parsons et al., Estimation of self-motion by optic flow processing in 233 single visual interneurons Head and body stabilization in blowflies walking on differently 235 structured substrates The halteres of the blowfly Calliphora A motion-sensitive neurone responds to 241 signals from the two visual systems of the blowfly, the compound eyes and ocelli Sensor Fusion in Identified Visual In- 244 terneurons, The neural basis of Drosophila gravity-sensing and hearing. Nature [21] H. Mittelstaedt. Physiologie des Gleichgewichtssinnes bei Fliegenden Libellen. Zeitschrift 237 für vergleichende Physiologie Sandeman and H. Markl. Head Movements in Flies (Calliphora) Produced by De- 246 flexion of the Halteres 248 Interplay between Feedback and Feedforward Control in Fly Gaze Stabilization 18th 249 IFAC World Congress, pp.165-171, 1950.

R. Julien, F. Serres, G. K. Ruffier, H. G. Taylor, and . Krapp, Optic flow-based collision-free strategies: From insects 251 to robots Arthropod structure & development, Sensory System and Flight Stability: What does Insects 253, pp.703-717

W. C. Measure, R. Trischler, M. Kern, and . Egelhaaf, Chasing behaviour and optomotor following in 255 free-flying male blowflies: flight performance and interactions of the underlying control 256 systems, Advances in Insect Physiology Frontiers in Behavioral Neuroscience, vol.34, issue.4, pp.231-316, 2007.

C. John, R. I. Tuthill, and . Wilson, Mechanosensation and adaptive motor control in 258 insects, Current Biology, vol.26, issue.20, pp.1022-1038, 2016.