F. Marble, Dynamics of a gas containing small solid particles, Combustion and Propulsion (5th AGARD Colloquium), pp.175-213, 1963.

M. Baer and J. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, International Journal of Multiphase Flow, vol.12, issue.6, pp.861-889, 1986.
DOI : 10.1016/0301-9322(86)90033-9

R. Saurel, A. Chinnayya, and Q. , Carmouze, Modelling compressible dense and dilute two-phase flows, Physics of Fluids, vol.29, issue.6, pp.2017-063301
DOI : 10.1063/1.4985289

URL : https://hal.archives-ouvertes.fr/hal-01454839/file/dense-dilue-V4.pdf

M. Lallemand and R. Saurel, Pressure relaxation procedures for multiphase compressible flows, International Journal for Numerical Methods in Fluids, vol.61, issue.1, 2000.
DOI : 10.1002/fld.967

URL : https://hal.archives-ouvertes.fr/inria-00072600

A. Forestier, J. Hérard, and X. Louis, Solveur de type Godunov pour simuler lesécoulementslesécoulements turbulents compressibles, Comptes Rendus de l'Académie des Sciences, Paris Série Mathématique, vol.1, issue.3248, pp.919-926, 1997.
DOI : 10.1016/s0764-4442(97)86969-8

R. Saurel, S. Gavrilyuk, and F. Renaud, A multiphase model with internal degrees of freedom: application to shock???bubble interaction, Journal of Fluid Mechanics, vol.495, pp.283-321, 2003.
DOI : 10.1017/S002211200300630X

D. Lhuillier, C. Chang, and T. Theofanous, On the quest for a hyperbolic effective-field model of disperse flows, Journal of Fluid Mechanics, vol.58, pp.184-194, 2013.
DOI : 10.1016/0301-9322(79)90013-2

G. Richard and S. Gavrilyuk, A new model of roll waves: comparison with Brock???s experiments, Journal of Fluid Mechanics, vol.10, pp.374-405, 2012.
DOI : 10.1098/rspa.1984.0079

S. Gavrilyuk, V. Liapidevskii, and A. Chesnokov, Spilling breakers in shallow water: applications to Favre waves and to the shoaling and breaking of solitary waves, Journal of Fluid Mechanics, vol.1948, pp.441-468, 2016.
DOI : 10.1017/S0022112001006024

R. Abgrall and S. Karni, Two-Layer Shallow Water System: A Relaxation Approach, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.1603-1627, 2009.
DOI : 10.1137/06067167X

T. Gallouet and J. Masella, Un schéma de Godunov approché, Comptes Rendus de l'Académie des Sciences, Paris Série Mathématique, vol.1, issue.3231, pp.77-84, 1996.

L. Ovsyannikov, Two-layer ?Shallow water? model, Journal of Applied Mechanics and Technical Physics, vol.2, issue.2, pp.127-135, 1979.
DOI : 10.1007/BF00910010

A. Kurganov and G. Petrova, Central-Upwind Schemes for Two-Layer Shallow Water Equations, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.1742-1773, 2009.
DOI : 10.1137/080719091

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=

R. Monjarret, Local Well-Posedness of the Two-Layer Shallow Water Model with Free Surface, SIAM Journal on Applied Mathematics, vol.75, issue.5, pp.2311-2332, 2015.
DOI : 10.1137/140957020

URL : http://arxiv.org/pdf/1402.3194

A. Kapila, R. Menikoff, J. Bdzil, S. Son, and D. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations, Physics of Fluids, vol.140, issue.10, pp.3002-3024, 2001.
DOI : 10.1016/S0045-7825(96)01050-X

R. Saurel and R. , A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows, Journal of Computational Physics, vol.150, issue.2, pp.425-467, 1999.
DOI : 10.1006/jcph.1999.6187

A. Harten, P. Lax, and B. Leer, On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, SIAM Review, vol.25, issue.1, pp.35-61, 1983.
DOI : 10.1137/1025002

R. Leveque, Finite volume methods for hyperbolic problems, 2002.
DOI : 10.1017/CBO9780511791253

E. Toro, Riemann solvers and numerical methods for fluid dynamics: A practical introduction, 2013.
DOI : 10.1007/978-3-662-03915-1

S. Davis, Simplified Second-Order Godunov-Type Methods, SIAM Journal on Scientific and Statistical Computing, vol.9, issue.3, pp.445-473, 1988.
DOI : 10.1137/0909030

A. Chiapolino, R. Saurel, and B. Nkonga, Sharpening diffuse interfaces with compressible fluids on unstructured meshes, Journal of Computational Physics, vol.340, pp.389-417, 2017.
DOI : 10.1016/j.jcp.2017.03.042

URL : https://hal.archives-ouvertes.fr/hal-01589124

B. Van-leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, Journal of Computational Physics, vol.14, issue.4, pp.361-370, 1974.
DOI : 10.1016/0021-9991(74)90019-9

P. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws, SIAM Journal on Numerical Analysis, vol.21, issue.5, pp.995-1011, 1984.
DOI : 10.1137/0721062

R. Saurel, F. Petitpas, and R. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, Journal of Computational Physics, vol.228, issue.5, pp.1678-1712, 2009.
DOI : 10.1016/j.jcp.2008.11.002

A. Chinnayya, E. Daniel, and R. Saurel, Modelling detonation waves in heterogeneous energetic materials, Journal of Computational Physics, vol.196, issue.2
DOI : 10.1016/j.jcp.2003.11.015