G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, and J. L. Tirado, REFERENCES, issue.1

P. Knauth, T. Djenizian, I. Hanzu, P. Knauth, and G. F. Ortiz, Alternative Li-Ion Battery Electrode Based on Self- Organized Titania Nanotubes Nanostructured Negative Electrodes Based on Titania for Li-Ion Microbatteries, 9925?9937. (3) Gonzaíez, pp.63-67, 2009.

J. L. Tirado, E. Zhecheva, R. Stoyanova, K. Lee, A. Mazare et al., Long-Length Titania Nanotubes Obtained by High-Voltage Anodization and High-Intensity Ultrasonication for Superior Capacity Electrode One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes, J. Phys. Chem. C Chem. Rev. Z.; Sun, vol.116, issue.1145, pp.20182-20190, 2012.

S. Dai, G. M. Brown, A. R. Armstrong, G. Armstrong, J. Canales et al., Mesoporous TiO 2 ?B Microspheres with Superior Rate Performance for Lithium Ion Batteries TiO 2 -B Nanowires, Adv. Mater. Angew. Chem., Int. Ed, vol.23, issue.437, pp.3450-3454, 2004.

, Lithium-Ion Intercalation into TiO 2 -B Nanowires, Adv. Mater, vol.17, issue.8, 2005.

P. G. Bruce, Nanoparticulate TiO 2 (B): An Anode for Lithium-Ion Batteries, Angew. Chem., Int. Ed, issue.2, 2012.

A. Flakes, . Materials, S. K. Li-ion-batteries-panda, S. Lee, W. Yoon et al., Reversible Phase Transformation of Titania (Anatase) Nanotubes upon Electrochemical Lithium-Intercalation Observed by Ex Situ Transmission Electron Microscopy, J. Power Sources J. Power Sources, vol.207, issue.24911, pp.166-172, 2012.

Y. Chung and . Choi,

, Figure 3 Discharge capacity as a function of the discharge cycle number of the cells at 1C rate (a) and Nyquist plots (at OCP vs Li/Li + ) (b) for the uncoated and 1 nm ALD Al 2 O 3 -coated TiO 2 nanotube layers. The inset in (b) shows a higher magnification of the first semicycle

, Figure 4. Equivalent circuits for the EIS plots of the (a) uncoated and (b) 1 nm ALD Al 2 O 3

D. Acs-omega-article, B. L. Ellis, P. Knauth, T. Djenizian, G. D. Salian et al., Three-Dimensional Self- Supported Metal Oxides for Advanced Energy Storage Electrodeposition of Polymer Electrolyte in Nanostructured Electrodes for Enhanced Electrochemical Performance of Thin-Film Li-Ion Microbatteries Energy and Power Density TiO 2 Nanotube Electrodes for Single and Complete Lithium- Ion Batteries, 3368?3397. (13) 242?246. (14) Plylahan, pp.10-1021, 2012.

S. Bauer, P. Schmuki, D. Fang, K. Huang, S. Liu et al., TiO 2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications Electrochemical Properties of Ordered TiO 2 Nanotube Loaded with Ag Nano-Particles for Lithium Anode Material, Design and Synthesis of Cu 6 Sn 5 -Coated TiO 2 Nanotube Arrays as Anode Material for Lithium Ion Batteries, pp.3-18, 2007.

T. 4. Djenizian, A Novel Architectured Negative Electrode Based on Titania Nanotube and Iron Oxide Nanowire Composites for Li-Ion Microbatteries, J. Mater. Chem. J. L, 1920.

T. Djenizian, Nanoarchitectured TiO 2 /SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries?

M. Du, G. Guo, Z. Zhang, P. Li, Y. Chen et al., SnO 2 Nanocrystals on Self-Organized TiO 2 Nanotube Array as Three- Dimensional Electrode for Lithium Ion Microbatteries Coaxial SnO 2 @TiO 2 Nanotube Hybrids: From Robust Assembly Strategies to Potential Application in Li + Storage Fabrication of ZnO@TiO 2 Core-Shell Nanotube Arrays as Three-Dimensional Anode Material for Lithium Ion Batteries Preparation of Regularly Structured Nanotubular TiO 2 Thin Films on ITO and Their Modification with Thin ALD-Grown Layers, Ha? rko? nen Strizik, L. Antireflection In 2 O 3 Coatings of Self-Organized TiO 2 Nanotube Layers Prepared by Atomic Layer Deposition, pp.5689-5694, 2010.

J. Prikryl, V. Ga?-rtnerova?,-rtnerova?, J. W. Bartha, J. M. Macak, S. K. Cheah et al., Atomic Layer Deposition for Coating of High Aspect Ratio TiO 2 Nanotube Layers, Langmuir, vol.32, pp.10551-10558, 2016.

L. Nyholm, M. Boman, T. Gustafsson, J. Lu, P. Simon et al., Edstro? m, K. Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications, Nano Lett, vol.9, pp.3230-3233, 2009.

S. M. George and S. Lee, Ultrathin Coatings on Nano-LiCoO 2 for Li- Ion Vehicular Applications, 414?418. (29) Memarzadeh Lotfabad, 2011.

A. Kohandehghan, M. Kupsta, and B. Olsen,

K. Cui, Coated Silicon Nanowires for Lithium Ion Battery Anodes With Enhanced Cycling Stability and Coulombic Efficiency, 13646?13657. (30) Lotfabad, 2013.

M. Kupsta, B. Olsen, B. Farbod, D. Mitlin, and H. Zhang, Si Nanotubes ALD Coated With TiO 2 , TiN or Al 2 O 3 As High Performance Lithium Ion Battery Anodes, Three-Dimensional SnO 2 @TiO 2

, Double-Shell Nanotubes on Carbon Cloth as a Flexible Anode for Lithium-Ion Batteries, 32) Lv, X.; Deng, J.; Sun, X. Cumulative Effect of Fe 2 O 3 on TiO, 2015.

, Appl. Surf. Sci, vol.369, pp.314-319, 2016.

, Controllable Synthesis of TiO 2 @Fe 2 O 3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes. Sci

J. Vetter, P. Novak, M. R. Wagner, and C. Veit, , 2017.

J. Besenhard,

A. Hammouche, Ageing Mechanisms in Lithium-Ion Batteries, J. Power Sources, vol.147, pp.269-281, 2005.

C. Groner, M. D. George, S. M. Lee, and S. , Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries, Adv. Mater. J. P, vol.22, issue.36, 2010.

J. Y. Huang, Situ Transmission Electron Microscopy Observation of Pulverization of Aluminum Nanowires and Evolution of the Thin Surface Al 2 O 3 Layers during Lithiation-Delithiation Cycles, 4188?4194. (37), 2011.

A. S. Cavanagh, S. Lee, and S. M. George, Using Atomic Layer Deposition to Hinder Solvent Decomposition in Lithium Ion Batteries: First-Principles Modeling and Experimental Studies, J. Am

. Chem and . Soc, C, 2011.

H. Jeon, R. Banerjee, Y. Sun, and W. Choi, Ultrathin Alumina-Coated Carbon Nanotubes as an Anode for High Capacity Li-Ion Batteries, J

. Mater, D. Chem-ahn, X. Xiao, H. T. Nguyen, M. R. Zamfir et al., Extended Lithium Titanate Cycling Potential Window with Near Zero Capacity Loss Alumina-Coated Silicon-Based Nanowire Arrays for High Quality Li-Ion Battery Anodes Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries Alumina-Coated Patterned Amorphous Silicon as the Anode for a Lithium-Ion Battery with High Coulombic Efficiency, Electrochem. Commun. J. Mater. Chem. Adv. Mater. Adv. Mater, vol.21, issue.23, pp.796-799, 2011.

M. L. Geier, J. W. Elam, and M. C. Hersam, Nanoscale Investigation of Solid Electrolyte Interphase Inhibition on Li-Ion Battery MnO Electrodes via Atomic Layer Deposition of Al 2 O 3, 935?940. (44) Das Macak, J. M. Electrochemical Infilling of CuInSe 2 within TiO

S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. Leclere et al., Formation of Double- Walled TiO 2 Nanotubes and Robust Anatase Membranes, Layers and Their Photoelectrochemical Studies. ChemElectroChem 2017 4135?4139. (46) Zazpe, R.; Prikryl, J.; Ga? rtnerova, 2008.

L. Strizik, A. Ja?-ger, M. Bosund, H. Sopha, J. M. Macak et al.,

, Coatings Significantly Improve Thermal, Chemical and Mechanical Stability of Anodic TiO 2 Nanotube Layers, Langmuir, vol.2017, issue.33, pp.3208-3216

D. Acs-omega-article, A. Attia, M. Zukalova, . Rathousky?, J. Rathousky? et al., Mesoporous electrode material from alumina-stabilized anatase TiO 2 for lithium ion batteries Green Energy Storage Materials: Nanostructured TiO 2 and Sn-Based Anodes for Lithium-Ion Batteries, How Do Li Atoms Pass through the Al 2 O 3 Coating Layer during Lithiation in Li-ion Batteries? J. Phys, pp.10-1021, 2005.

. Chem, H. Lett-lindstrom, S. Sodergren, A. Solbrand, H. Rensmo et al., Li + Ion Insertion in TiO 2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films, 2013.

C. Liu and R. , J, vol.101, issue.7710?7716, 1997.

X. Jiang, Z. Luo, C. Xiong, and Q. Wang, High Capacity Lithium Ion Battery Anodes Using Sn Nanowires Encapsulated Al 2 O 3 Tubes in Carbon Matrix, Adv. Mater. Interfaces, vol.3, p.1500491, 2016.

D. Acs-omega-article, , pp.2749-2756