D. P. Clark, N. J. Pazdernik, and . Biotechnology, Academic Cell, vol.11, pp.365-392, 2016.

A. G. Popplewell, Pharmaceutical Sciences Encyclopedia, 2015.

G. Anderluh and J. H. Lakey, Disparate proteins use similar architectures to damage membranes, Trends in Biochemical Sciences, vol.33, issue.10, pp.482-490, 2008.
DOI : 10.1016/j.tibs.2008.07.004

R. J. Gilbert, D. Serra, M. Froelich, C. J. Wallace, M. I. Anderluh et al., Membrane pore formation at protein???lipid interfaces, Trends in Biochemical Sciences, vol.39, issue.11, pp.510-516, 2014.
DOI : 10.1016/j.tibs.2014.09.002

M. Ayub and H. Bayley, Engineered transmembrane pores, Current Opinion in Chemical Biology, vol.34, pp.117-126, 2016.
DOI : 10.1016/j.cbpa.2016.08.005

URL : http://europepmc.org/articles/pmc5123773?pdf=render

P. A. Gurnev and E. M. Nestorovich, Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery, Toxins, vol.278, issue.8, pp.2483-2540, 2014.
DOI : 10.1007/s00210-010-0581-y

URL : https://www.mdpi.com/2072-6651/6/8/2483/pdf

M. Ayub, D. Stoddart, and H. Bayley, Nucleobase Recognition by Truncated ??-Hemolysin Pores, ACS Nano, vol.9, issue.8, pp.7895-7903, 2015.
DOI : 10.1021/nn5060317

URL : http://europepmc.org/articles/pmc4830132?pdf=render

M. Clamer, L. Höfler, E. Mikhailova, G. Viero, and H. Bayley, Detection of 3???-End RNA Uridylation with a Protein Nanopore, ACS Nano, vol.8, issue.2, pp.1364-1374, 2014.
DOI : 10.1021/nn4050479

URL : http://europepmc.org/articles/pmc3936189?pdf=render

M. Ayub, S. W. Hardwick, B. F. Luisi, and H. Bayley, Nanopore-Based Identification of Individual Nucleotides for Direct RNA Sequencing, Nano Letters, vol.13, issue.12, pp.6144-6150, 2013.
DOI : 10.1021/nl403469r

URL : http://europepmc.org/articles/pmc3899427?pdf=render

J. Quick, Real-time, portable genome sequencing for Ebola surveillance, Nature, vol.504, issue.7589, pp.228-232, 2016.
DOI : 10.1093/bioinformatics/btp163

URL : http://europepmc.org/articles/pmc4817224?pdf=render

J. Lee, Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry, ACS Nano, vol.10, issue.9, pp.8843-8850, 2016.
DOI : 10.1021/acsnano.6b04663

URL : http://doi.org/10.1021/acsnano.6b04663

S. Lomonaco, D. Nucera, and V. Filipello, The evolution and epidemiology of Listeria monocytogenes in Europe and the United States, Infection, Genetics and Evolution, vol.35, pp.172-183, 2015.
DOI : 10.1016/j.meegid.2015.08.008

, Scientific RepoRts | 7:42231 | DOI: 10.1038/srep42231 13. Birmingham, C. L. et al. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles, Nature, vol.451, pp.350-354, 2008.

M. A. Czuczman, Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread, Nature, vol.3, issue.7499, pp.230-234, 2014.
DOI : 10.1046/j.1462-5822.2001.00087.x

M. A. Hamon, D. Ribet, F. Stavru, and P. Cossart, Listeriolysin O: the Swiss army knife of Listeria, Trends in Microbiology, vol.20, issue.8, pp.360-368, 2012.
DOI : 10.1016/j.tim.2012.04.006

S. Seveau, . Macpf, G. Cdc-anderluh, R. Gilbert, and . Ch, Proteins -Agents of Defence, vol.9, pp.161-195, 2014.

S. Köster, Crystal structure of listeriolysin O reveals molecular details of oligomerization and pore formation, Nature Communications, vol.248, issue.1, p.3690, 2014.
DOI : 10.1093/nar/gkm276

R. K. Tweten, E. M. Hotze, and K. R. Wade, The Unique Molecular Choreography of Giant Pore Formation by the Cholesterol-Dependent Cytolysins of Gram-Positive Bacteria, Annual Review of Microbiology, vol.69, issue.1, pp.323-340, 2015.
DOI : 10.1146/annurev-micro-091014-104233

A. Bavdek, Biochemistry, vol.46, issue.14, pp.4425-4437, 2007.
DOI : 10.1021/bi602497g

M. Podobnik, Plasticity of Listeriolysin O Pores and its Regulation by pH and Unique Histidine, Scientific Reports, vol.9, issue.1, p.9623, 2015.
DOI : 10.1038/nmeth.2089

Y. Ruan, S. Rezelj, A. B. Zavec, G. Anderluh, and S. Scheuring, Listeriolysin O Membrane Damaging Activity Involves Arc Formation and Lineaction -- Implication for Listeria monocytogenes Escape from Phagocytic Vacuole, PLOS Pathogens, vol.60, issue.4, p.1005597, 2016.
DOI : 10.1371/journal.ppat.1005597.s011

URL : https://hal.archives-ouvertes.fr/inserm-01307112

D. W. Schuerch, E. M. Wilson-kubalek, and R. K. Tweten, Molecular basis of listeriolysin O pH dependence, Proc. Natl. Acad. Sci. USA, pp.12537-12542, 2005.
DOI : 10.1002/elps.1150181505

A. Bavdek, pH dependence of listeriolysin O aggregation and pore-forming ability, FEBS Journal, vol.145, issue.1, pp.126-141, 2012.
DOI : 10.1016/j.chemphyslip.2006.02.010

K. Mann and M. Kullberg, Trastuzumab-targeted gene delivery to Her2-overexpressing breast cancer cells, Cancer Gene Therapy, vol.12, issue.7, pp.221-228, 2016.
DOI : 10.1007/s12094-011-0744-4

O. Ahmed, A. Krühn, H. Lage, and . Interference, , pp.117-129, 2015.

A. Wallecha, ABSTRACT, Clinical and Vaccine Immunology, vol.20, issue.1, pp.77-84, 2013.
DOI : 10.1128/CVI.00488-12

X. Peng, J. Treml, and Y. Paterson, Adjuvant properties of listeriolysin O protein in a DNA vaccination strategy, Cancer Immunology, Immunotherapy, vol.39, issue.6, pp.797-806, 2006.
DOI : 10.4049/jimmunol.171.6.2970

T. Nomura, Irreversible loss of membrane-binding activity of Listeria-derived cytolysins in non-acidic conditions: a distinct difference from allied cytolysins produced by other Gram-positive bacteria, Microbiology, vol.153, issue.7, pp.2250-2258, 2007.
DOI : 10.1099/mic.0.2007/005843-0

J. Rossjohn, Structures of Perfringolysin O Suggest a Pathway for Activation of Cholesterol-dependent Cytolysins, Journal of Molecular Biology, vol.367, issue.5, pp.1227-1236, 2007.
DOI : 10.1016/j.jmb.2007.01.042

URL : http://europepmc.org/articles/pmc3674820?pdf=render

C. F. Reboul, J. C. Whisstock, and M. A. Dunstone, A New Model for Pore Formation by Cholesterol-Dependent Cytolysins, PLoS Computational Biology, vol.66, issue.8, p.1003791, 2014.
DOI : 10.1371/journal.pcbi.1003791.s019

URL : https://doi.org/10.1371/journal.pcbi.1003791

S. Vadia, The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes, PLoS Pathogens, vol.13, issue.11, p.1002356, 2011.
DOI : 10.1371/journal.ppat.1002356.s017

URL : https://doi.org/10.1371/journal.ppat.1002356

T. Ando, T. Uchihashi, and S. Scheuring, Filming Biomolecular Processes by High-Speed Atomic Force Microscopy, Chemical Reviews, vol.114, issue.6, pp.3120-3188, 2014.
DOI : 10.1021/cr4003837

URL : https://doi.org/10.1021/cr4003837

I. Munguira, Glasslike Membrane Protein Diffusion in a Crowded Membrane, ACS Nano, vol.10, issue.2, pp.2584-2590, 2016.
DOI : 10.1021/acsnano.5b07595

URL : http://www.hal.inserm.fr/inserm-01285787/file/Munguira_et_al_ACS-Nano-Manuscript_Corrected.pdf

N. Yilmaz and T. Kobayashi, Assemblies of pore-forming toxins visualized by atomic force microscopy, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1858, issue.3, pp.500-511, 2016.
DOI : 10.1016/j.bbamem.2015.11.005

URL : https://doi.org/10.1016/j.bbamem.2015.11.005

T. Praper, Human perforin permeabilizing activity, but not binding to lipid membranes, is affected by pH, Molecular Immunology, vol.47, issue.15, pp.2492-2504, 2010.
DOI : 10.1016/j.molimm.2010.06.001

M. M. Cajnko, Listeriolysin O Affects the Permeability of Caco-2 Monolayer in a Pore-Dependent and Ca 2+ -Independent Manner, PLoS ONE, vol.10, p.130471, 2015.

M. Ben?ina, Illumination of the Spatial Order of Intracellular pH by Genetically Encoded pH-Sensitive Sensors, Sensors, vol.32, issue.12, pp.16736-16758, 2013.
DOI : 10.1038/emboj.2013.124

N. Aliye, A. Fabbretti, G. Lupidi, T. Tsekoa, and R. Spurio, Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics, Applied Microbiology and Biotechnology, vol.279, issue.3, pp.1205-1216, 2014.
DOI : 10.1074/jbc.M402405200

P. Heinzelman, J. Krais, E. Ruben, and R. Pantazes, Engineering pH responsive fibronectin domains for biomedical applications, Journal of Biological Engineering, vol.1, issue.2, p.6, 2015.
DOI : 10.1038/nprot.2006.94

URL : https://jbioleng.biomedcentral.com/track/pdf/10.1186/s13036-015-0004-1?site=jbioleng.biomedcentral.com

M. J. Borrok, pH-dependent Binding Engineering Reveals an FcRn Affinity Threshold That Governs IgG Recycling, Journal of Biological Chemistry, vol.158, issue.7, pp.4282-4290, 2015.
DOI : 10.1093/protein/gzq009

URL : http://www.jbc.org/content/290/7/4282.full.pdf

M. W. Traxlmayr, Construction of pH-sensitive Her2-binding IgG1-Fc by directed evolution, Biotechnology Journal, vol.26, issue.8, pp.1013-1022, 2014.
DOI : 10.1093/protein/gzt041

URL : http://onlinelibrary.wiley.com/doi/10.1002/biot.201300483/pdf

M. L. Murtaugh, S. W. Fanning, T. M. Sharma, A. M. Terry, and J. R. Horn, A combinatorial histidine scanning library approach to engineer highly pH-dependent protein switches, Protein Science, vol.60, issue.9, pp.1619-1631, 2011.
DOI : 10.1107/S0907444904019158

URL : http://onlinelibrary.wiley.com/doi/10.1002/pro.696/pdf

H. Watanabe, H. Matsumaru, A. Ooishi, and S. Honda, Structure-based histidine substitution for optimizing pH-sensitive Staphylococcus protein A, Journal of Chromatography B, vol.929, pp.155-160, 2013.
DOI : 10.1016/j.jchromb.2013.04.029

W. Li, F. Nicol, J. Szoka, and F. C. , GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery, Advanced Drug Delivery Reviews, vol.56, issue.7, pp.967-985, 2004.
DOI : 10.1016/j.addr.2003.10.041

S. Raman, N. Taylor, N. Genuth, S. Fields, G. M. Church et al., Engineering allostery, Trends in Genetics, vol.30, issue.12, pp.521-528, 2014.
DOI : 10.1016/j.tig.2014.09.004

URL : https://manuscript.elsevier.com/S0168952514001401/pdf/S0168952514001401.pdf

A. R. Shenoy and S. S. Visweswariah, Site-directed mutagenesis using a single mutagenic oligonucleotide and DpnI digestion of template DNA, Analytical Biochemistry, vol.319, issue.2, pp.335-336, 2003.
DOI : 10.1016/S0003-2697(03)00286-0

B. Hess, C. Kutzner, D. Van-der-spoel, E. Lindahl, and . Gromacs, GROMACS 4:?? Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation, vol.4, issue.3, pp.435-447, 2008.
DOI : 10.1021/ct700301q

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.926-935, 1983.
DOI : 10.1016/0009-2614(80)85344-9

N. Foloppe, J. Mackerell, and D. Alexander, All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data, Journal of Computational Chemistry, vol.7, issue.2, pp.86-104, 2000.
DOI : 10.1007/978-1-4684-8580-6_2

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, The Journal of Chemical Physics, vol.126, issue.1, p.14101, 2007.
DOI : 10.1007/978-3-642-61544-3

URL : http://arxiv.org/pdf/0803.4060

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied Physics, vol.52, issue.12, pp.7182-7190, 1981.
DOI : 10.1103/PhysRevA.22.1690

U. Essmann, A smooth particle mesh Ewald method, The Journal of Chemical Physics, vol.100, issue.19, pp.8577-8593, 1995.
DOI : 10.1063/1.470043

. Schrodinger, The PyMOL Molecular Graphics System, Version 1, p.2015

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

R. Anandakrishnan, B. Aguilar, and A. Onufriev, H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations, Nucleic Acids Research, vol.25, issue.16, pp.537-541, 2012.
DOI : 10.1002/jcc.20139

J. C. Gordon, H++: a server for estimating pKas and adding missing hydrogens to macromolecules, Nucleic Acids Research, vol.33, issue.Web Server, pp.368-371, 2005.
DOI : 10.1093/nar/gki464

URL : https://academic.oup.com/nar/article-pdf/33/suppl_2/W368/7623463/gki464.pdf

J. Myers, G. Grothaus, S. Narayanan, and A. Onufriev, A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules, Proteins: Structure, Function, and Bioinformatics, vol.40, issue.12, pp.928-938, 2006.
DOI : 10.1021/jp963412w

D. Bashford and M. Karplus, pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model, Biochemistry, vol.29, issue.44, pp.10219-10225, 1990.
DOI : 10.1021/bi00496a010

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1093/bioinformatics/btr390

URL : http://europepmc.org/articles/pmc3855844?pdf=render

M. Mingeot-leclercq, M. Deleu, R. Brasseur, and Y. Dufrêne, Atomic force microscopy of supported lipid bilayers, Nature Protocols, vol.3, issue.10, pp.1654-1659, 2008.
DOI : 10.1038/nprot.2008.149

N. Chiaruttini, Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation, Cell, vol.163, issue.4, pp.866-879, 2015.
DOI : 10.1016/j.cell.2015.10.017

URL : https://hal.archives-ouvertes.fr/hal-01238262

A. Miyagi, C. Chipot, M. Rangl, and S. Scheuring, High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale, Nature Nanotechnology, vol.13, issue.9, pp.783-790, 2016.
DOI : 10.1002/jcc.540130805

J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, The ImageJ ecosystem: An open platform for biomedical image analysis, Molecular Reproduction and Development, vol.15, issue.7-8, pp.518-529, 2015.
DOI : 10.1038/nmeth.2089

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/mrd.22489

M. Husain, T. Boudier, P. Paul-gilloteaux, I. Casuso, and S. Scheuring, Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series, Journal of Molecular Recognition, vol.70, issue.11, pp.292-298, 2012.
DOI : 10.1063/1.1150069

URL : https://hal.archives-ouvertes.fr/inserm-01363229