R. Edgar, M. Domrachev, and A. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Research, vol.30, issue.1, pp.207-210, 2002.
DOI : 10.1093/nar/30.1.207

URL : https://academic.oup.com/nar/article-pdf/30/1/207/9901036/300207.pdf

A. Figueroa, H. Kotani, Y. Toda, K. Mazan-mamczarz, E. Mueller et al., Novel Roles of Hakai in Cell Proliferation and Oncogenesis, Molecular Biology of the Cell, vol.23, issue.15, pp.3533-3542, 2009.
DOI : 10.1128/MCB.23.18.6618-6630.2003

URL : http://www.molbiolcell.org/content/20/15/3533.full.pdf

H. Galfalvy, L. Erraji-benchekroun, P. Smyrniotopoulos, P. Pavlidis, S. Ellis et al., Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction, BMC Bioinformatics, vol.4, issue.1, p.37, 2003.
DOI : 10.1186/1471-2105-4-37

V. Greco-stewart, C. Thibault, and M. Pelchat, Binding of the polypyrimidine tract-binding protein-associated splicing factor (PSF) to the hepatitis delta virus RNA, Virology, vol.356, issue.1-2, pp.35-44, 2006.
DOI : 10.1016/j.virol.2006.06.040

B. Harr and C. Schlotterer, Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons, Nucleic Acids Research, vol.34, issue.2, p.8, 2006.
DOI : 10.1093/nar/gnj010

F. Hong, R. Breitling, C. Mcentee, B. Wittner, J. Nemhauser et al., RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis, Bioinformatics, vol.136, issue.22, pp.2825-2827, 2006.
DOI : 10.1104/pp.104.046367

URL : https://academic.oup.com/bioinformatics/article-pdf/22/22/2825/16852094/btl476.pdf

W. Huang-da, B. Sherman, and R. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature Protocols, vol.99, issue.1, pp.44-57, 2009.
DOI : 10.6026/97320630002428

W. Huber, A. Von-heydebreck, H. Sultmann, A. Poustka, and M. Vingron, Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics, vol.18, issue.Suppl 1, pp.96-104, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S96

URL : https://academic.oup.com/bioinformatics/article-pdf/18/suppl_1/S96/629729/18S096.pdf

N. Hwang, S. Yim, Y. Kim, J. Jeong, E. Song et al., Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions, Biochemical Journal, vol.335, issue.2, pp.253-264, 2009.
DOI : 10.1016/S0006-291X(03)01222-1

URL : http://www.biochemj.org/content/ppbiochemj/423/2/253.full.pdf

V. Iacobazzi, V. Infantino, P. Costanzo, P. Izzo, and F. Palmieri, Functional analysis of the promoter of the mitochondrial phosphate carrier human gene: identification of activator and repressor elements and their transcription factors, Biochemical Journal, vol.391, issue.3, pp.613-621, 2005.
DOI : 10.1042/BJ20050776

N. Ingolia, Genome-Wide Translational Profiling by Ribosome Footprinting, Methods Enzymol, vol.470, pp.119-142
DOI : 10.1016/S0076-6879(10)70006-9

N. Ingolia, Ribosome Footprint Profiling of Translation throughout the Genome, Cell, vol.165, issue.1, pp.22-33, 2016.
DOI : 10.1016/j.cell.2016.02.066

URL : https://doi.org/10.1016/j.cell.2016.02.066

R. Irizarry, B. Bolstad, C. F. Cope, L. Hobbs, B. Speed et al., Summaries of Affymetrix GeneChip probe level data, Nucleic Acids Research, vol.31, issue.4, p.15, 2003.
DOI : 10.1093/nar/gng015

URL : https://academic.oup.com/nar/article-pdf/31/4/e15/7038596/gng015.pdf

R. Irizarry, B. Hobbs, C. F. Beazer-barclay, Y. Antonellis, K. Scherf et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, issue.2, pp.249-264, 2003.
DOI : 10.1093/biostatistics/4.2.249

URL : https://academic.oup.com/biostatistics/article-pdf/4/2/249/677018/040249.pdf

M. Jeanmougin, A. De-reynies, L. Marisa, C. Paccard, G. Nuel et al., Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies, PLoS ONE, vol.8, issue.9, p.12336, 2010.
DOI : 10.1371/journal.pone.0012336.s002

URL : https://hal.archives-ouvertes.fr/hal-00539115

M. Kerr, M. Martin, and G. Churchill, Analysis of Variance for Gene Expression Microarray Data, Journal of Computational Biology, vol.7, issue.6, pp.819-837, 2000.
DOI : 10.1089/10665270050514954

URL : http://genet.univ-tours.fr/gen002200/bibliographie/Bouquins INRA/Biblio/Analysis of variance for gene.pdf

H. King and A. Gerber, Translatome profiling: methods for genome-scale analysis of mRNA translation, Briefings in Functional Genomics, vol.20, issue.36, pp.22-31, 2014.
DOI : 10.1074/jbc.272.36.22642

URL : https://academic.oup.com/bfg/article-pdf/15/1/22/6684238/elu045.pdf

H. King, L. Cobbold, X. Pichon, T. Poyry, L. Wilson et al., Remodelling of a polypyrimidine tract-binding protein complex during apoptosis activates cellular IRESs, Cell Death & Differentiation, vol.47, issue.1, pp.161-171, 2013.
DOI : 10.1016/j.molcel.2012.05.004

URL : http://www.nature.com/cdd/journal/v21/n1/pdf/cdd2013135a.pdf

N. Kolesnikov, E. Hastings, M. Keays, O. Melnichuk, Y. Tang et al., ArrayExpress update???simplifying data submissions, Nucleic Acids Research, vol.42, issue.D1, pp.1113-1116, 2015.
DOI : 10.1093/nar/gkt1081

URL : https://academic.oup.com/nar/article-pdf/43/D1/D1113/7315749/gku1057.pdf

A. Kula, L. Gharu, and M. A. , HIV-1 pre-mRNA commitment to Rev mediated export through PSF and Matrin 3, Virology, vol.435, issue.2, pp.329-340, 2013.
DOI : 10.1016/j.virol.2012.10.032

URL : https://doi.org/10.1016/j.virol.2012.10.032

S. Landeras-bueno, N. Jorba, M. Perez-cidoncha, and J. Ortin, The Splicing Factor Proline-Glutamine Rich (SFPQ/PSF) Is Involved in Influenza Virus Transcription, PLoS Pathogens, vol.70, issue.11, p.1002397, 2011.
DOI : 10.1371/journal.ppat.1002397.s003

URL : http://doi.org/10.1371/journal.ppat.1002397

M. Landfors, P. Philip, P. Ryden, and P. Stenberg, Normalization of High Dimensional Genomics Data Where the Distribution of the Altered Variables Is Skewed, PLoS ONE, vol.17, issue.11, p.27942, 2011.
DOI : 10.1371/journal.pone.0027942.s007

O. Larsson, N. Sonenberg, and R. Nadon, Identification of differential translation in genome wide studies, Proceedings of the National Academy of Sciences, vol.8, issue.20, pp.21487-21492, 2010.
DOI : 10.1186/1471-2105-8-48

URL : http://www.pnas.org/content/107/50/21487.full.pdf

L. Quesne, J. Spriggs, K. Bushell, M. Willis, and A. , Dysregulation of protein synthesis and disease, The Journal of Pathology, vol.324, pp.140-151, 2010.
DOI : 10.4161/cc.8.6.7907

A. Lex, N. Gehlenborg, H. Strobelt, R. Vuillemot, and H. Pfister, UpSet: Visualization of Intersecting Sets, IEEE Transactions on Visualization and Computer Graphics, vol.20, issue.12, pp.1983-1992, 2014.
DOI : 10.1109/TVCG.2014.2346248

URL : http://ieeexplore.ieee.org:80/stamp/stamp.jsp?tp=&arnumber=6876017

C. Li and W. Wong, Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection, Proceedings of the National Academy of Sciences, vol.80, issue.13, pp.31-36, 2001.
DOI : 10.1002/1097-4644(20010201)80:2<192::AID-JCB50>3.0.CO;2-W

URL : http://www.pnas.org/content/98/1/31.full.pdf

D. Lin and F. Zou, Assessing genomewide statistical significance in linkage studies, Genetic Epidemiology, vol.158, issue.3, pp.202-214, 2004.
DOI : 10.1017/CBO9780511802256

L. Lowery, J. Rubin, and H. Sive, Whitesnake/sfpq is required for cell survival and neuronal development in the zebrafish, Developmental Dynamics, vol.237, issue.3, pp.1347-1357, 2007.
DOI : 10.1002/dvdy.21461

URL : http://onlinelibrary.wiley.com/doi/10.1002/dvdy.21132/pdf

C. Pelz, M. Kulesz-martin, G. Bagby, and R. Sears, Global Rank-invariant Set Normalization (GRSN) to reduce systematic distortions in microarray data, BMC Bioinformatics, vol.9, issue.1, p.520, 2008.
DOI : 10.1186/1471-2105-9-520

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-9-520?site=bmcbioinformatics.biomedcentral.com

V. Polunovsky and P. Bitterman, The Cap-Dependent Translation Apparatus Integrates and Amplifies Cancer Pathways, RNA Biology, vol.3, issue.1, pp.10-17, 2006.
DOI : 10.4161/rna.3.1.2718

M. Ritchie, B. Phipson, D. Wu, Y. Hu, C. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.15, issue.7, p.47, 2015.
DOI : 10.1186/s13059-014-0465-4

URL : https://academic.oup.com/nar/article-pdf/43/7/e47/7207289/gkv007.pdf

T. Rodriguez-rigueiro, M. Valladares-ayerbes, M. Haz-conde, L. Aparicio, and A. Figueroa, Hakai reduces cell-substratum adhesion and increases epithelial cell invasion, BMC Cancer, vol.19, issue.6, p.474, 2011.
DOI : 10.1158/1055-9965.EPI-10-0123

T. Sbarrato, E. Horvilleur, T. Poyry, K. Hill, L. Chaplin et al., A ribosome-related signature in peripheral blood CLL B cells is linked to reduced survival following treatment, Cell Death & Disease, vol.87, issue.6, p.2249, 2016.
DOI : 10.1101/gr.1239303

URL : http://www.nature.com/cddis/journal/v7/n6/pdf/cddis2016148a.pdf

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-675, 2012.
DOI : 10.2144/000112257

URL : http://europepmc.org/articles/pmc5554542?pdf=render

Y. Shav-tal, M. Cohen, S. Lapter, B. Dye, J. Patton et al., Nuclear Relocalization of the Pre-mRNA Splicing Factor PSF during Apoptosis Involves Hyperphosphorylation, Masking of Antigenic Epitopes, and Changes in Protein Interactions, Molecular Biology of the Cell, vol.16, issue.8, pp.2328-2340, 2001.
DOI : 10.1093/emboj/16.6.1401

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.3, 2004.
DOI : 10.2202/1544-6115.1027

URL : http://www.mcb.mcgill.ca/~hallett/2/limma.pdf

G. Smyth and T. Speed, Normalization of cDNA microarray data, Methods, vol.31, issue.4, pp.265-273, 2003.
DOI : 10.1016/S1046-2023(03)00155-5

URL : http://www.statsci.org/webguide/smyth/pubs/normalize.pdf

G. Smyth, Y. Yang, and T. Speed, Statistical Issues in cDNA Microarray Data Analysis, Methods Mol Biol, vol.224, pp.111-136, 2002.
DOI : 10.1385/1-59259-364-X:111

URL : http://www.stat.Berkeley.EDU/users/terry/zarray/Html/../TechReport/mareview.pdf

T. Sorlie, R. Tibshirani, J. Parker, T. Hastie, J. Marron et al., Repeated observation of breast tumor subtypes in independent gene expression data sets, Proceedings of the National Academy of Sciences, vol.59, issue.14, pp.8418-8423, 2003.
DOI : 10.1016/S0140-6736(02)11087-7

K. Spriggs, M. Bushell, and A. Willis, Translational Regulation of Gene Expression during Conditions of Cell Stress, Molecular Cell, vol.40, issue.2, pp.228-237, 2010.
DOI : 10.1016/j.molcel.2010.09.028

URL : https://doi.org/10.1016/j.molcel.2010.09.028

F. Supek, M. Bosnjak, N. Skunca, and T. Smuc, REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms, PLoS ONE, vol.6, issue.7, p.21800, 2011.
DOI : 10.1371/journal.pone.0021800.t001

URL : https://doi.org/10.1371/journal.pone.0021800

J. Thomas, J. Olson, S. Tapscott, and L. Zhao, An Efficient and Robust Statistical Modeling Approach to Discover Differentially Expressed Genes Using Genomic Expression Profiles, Genome Research, vol.11, issue.7, pp.1227-1236, 2001.
DOI : 10.1101/gr.165101

URL : http://genome.cshlp.org/content/11/7/1227.full.pdf

T. Tsukahara, H. Haniu, and Y. Matsuda, PTB-Associated Splicing Factor (PSF) Is a PPAR??-Binding Protein and Growth Regulator of Colon Cancer Cells, PLoS ONE, vol.51, issue.3, p.58749, 2013.
DOI : 10.1371/journal.pone.0058749.s002

URL : https://doi.org/10.1371/journal.pone.0058749

V. Tusher, R. Tibshirani, C. G. Veer, L. Dai, H. Van-de-vijver et al., Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences, vol.57, issue.2, pp.5116-5121, 2001.
DOI : 10.2307/3579583

URL : http://www.pnas.org/content/98/9/5116.full.pdf