K. Watanabe, T. Taniguchi, T. Niiyama, K. Miya, and M. Taniguchi, Nat. Photonics, vol.3, p.591, 2009.

Z. Jacob, Nat. Mater, vol.13, p.1081, 2014.

T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso et al., ACS Nano, vol.10, p.7331, 2016.

R. Bourrellier, S. Meuret, A. Tararan, O. Stéphan, M. Kociak et al., Nano Lett, vol.16, p.4317, 2016.

J. Wu, H. Wang, L. Jiang, J. Guo, X. Dai et al., J. Appl. Phys, vol.119, p.203107, 2016.

K. Watanabe, T. Taniguchi, T. Kuroda, and H. Kanda, Diam. Relat. Mater, vol.15, p.1891, 2006.

P. Jaffrennou, J. Barjon, J. Lauret, A. Loiseau, F. Ducastelle et al., J. Appl. Phys, vol.102, p.116102, 2007.

K. Watanabe and T. Taniguchi, Phys. Rev. B, vol.79, p.193104, 2009.

L. Museur, G. Brasse, A. Pierret, S. Maine, B. Attal-tretout et al., Phys. status solidi-Rapid Res. Lett, vol.5, p.214, 2011.

A. Pierret, J. Loayza, B. Berini, A. Betz, B. Plaçais et al., Phys. Rev. B, vol.89, p.35414, 2014.

R. Bourrellier, M. Amato, L. H. Galvão-tizei, C. Giorgetti, A. Gloter et al., ACS Photonics, vol.1, p.857, 2014.

X. Z. Du, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett, vol.106, p.21110, 2015.

G. Cassabois, P. Valvin, and B. Gil, Nat. Photon, vol.10, p.262, 2016.

G. Cassabois, P. Valvin, and B. Gil, Phys. Rev. B, vol.93, p.35207, 2016.

T. C. Doan, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett, vol.109, p.122101, 2016.

J. Li, X. K. Cao, T. B. Hoffman, J. H. Edgar, J. Y. Lin et al., Appl. Phys. Lett, vol.108, p.122101, 2016.

H. Henck, D. Pierucci, G. Fugallo, J. Avila, G. Cassabois et al., Phys. Rev. B, vol.95, p.85410, 2017.

L. Schué, B. Berini, A. C. Betz, B. Plaçais, F. Ducastelle et al., Nanoscale, vol.8, p.6986, 2016.

L. Schué, I. Stenger, F. Fossard, A. Loiseau, J. Barjon et al., , vol.4, p.15028, 2017.

T. Q. Vuong, G. Cassabois, P. Valvin, V. Jacques, R. Cuscó et al., Phys. Rev. B, vol.95, p.45207, 2017.

X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Phys. Rev. B, vol.51, p.6868, 1995.

B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett, vol.96, p.26402, 2006.

B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett, vol.100, p.189702, 2008.

L. Wirtz, A. Marini, and A. Rubio, Phys. Rev. Lett, vol.96, p.126104, 2006.

L. Wirtz, A. Marini, M. Grüning, C. Attaccalite, G. Kresse et al., Phys. Rev. Lett, vol.100, p.189701, 2008.

W. Aggoune, C. Cocchi, D. Nabok, K. Rezouali, M. A. Belkhir et al., Phys. Rev. B, vol.97, p.241114, 2018.

L. Schué, L. Sponza, A. Plaud, H. Bensalah, K. Watanabe et al.,

R. M. Ribeiro and N. M. Peres, Phys. Rev. B, vol.83, p.235312, 2011.

T. Galvani, F. Paleari, H. P. Miranda, A. Molina-sánchez, L. Wirtz et al., Phys. Rev. B, vol.94, p.125303, 2016.

J. Kang, L. Zhang, and S. Wei, J. Phys. Chem. Lett, vol.7, p.597, 2016.

F. Paleari, T. Galvani, H. Amara, F. Ducastelle, A. Molinasánchez et al., , vol.5, p.45017, 2018.

L. Sponza, H. Amara, F. Ducastelle, A. Loiseau, and C. Attaccalite, Phys. Rev. B, vol.97, p.75121, 2018.

M. Chubarov, H. Pedersen, H. Högberg, J. Jensen, and A. Henry, Crystal Growth & Design, vol.12, p.3215, 2012.

C. Kim, L. Brown, M. W. Graham, R. Hovden, R. W. Havener et al., Nano Lett, vol.13, p.5660, 2013.

R. Martin, L. Reining, and D. Ceperley, Interacting Electrons, 2016.

J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Du?ak et al., J. Phys.: Condens. Matter, vol.22, p.253202, 2010.

F. Fossard, L. Sponza, L. Schué, C. Attaccalite, F. Ducastelle et al., Phys. Rev. B, vol.96, p.115304, 2017.

X. Gonze, G. Rignanese, M. Verstraete, J. Betiken, Y. Pouillon et al., Zeitschrift für Krsitallographie-Crystalline Materials, vol.220, p.558, 2005.

, In the single layer, the origin belongs to = N and R ? B = + ? j with j any of 1, 2, or 3. We will take j = 3 for simplicity

G. H. Wannier, Phys. Rev, vol.52, p.191, 1937.

R. S. Knox, Theory of Excitons, 1963.

Y. Toyozawa, Optical Processes in Solids, 2003.

F. Bechstedt, Many-Body Approach to Electronic Excitations, 2015.

, a detailed explanation of the splitting of excitonic states is provided showing also that surface effects lead to an energetic separation between excitons localized on the inner layers and excitons localized on the outer layers

J. Koskelo, G. Fugallo, M. Hakala, M. Gatti, F. Sottile et al., Phys. Rev. B, vol.95, p.35125, 2017.

L. Wirtz and A. Rubio, Optical and vibrational properties of boron nitride nanotubes, B-C-N Nanotubes and Related Nanostructures, pp.105-148, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00575802

N. Berseneva, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. B, vol.87, p.35404, 2013.

F. Hüser, T. Olsen, and K. S. Thygesen, Phys. Rev. B, vol.87, p.235132, 2013.

P. Cudazzo, L. Sponza, C. Giorgetti, L. Reining, F. Sottile et al., Phys. Rev. Lett, vol.116, p.66803, 2016.

D. Y. Qiu, T. Cao, and S. G. Louie, Phys. Rev. Lett, vol.115, p.176801, 2015.

F. Wu, F. Qu, and A. H. Macdonald, Phys. Rev. B, vol.91, p.75310, 2015.

L. Zheng, L. Feng, and W. Yong-shi, Chin. Phys. B, vol.23, p.77308, 2014.

S. Galambosi, L. Wirtz, J. A. Soininen, J. Serrano, A. Marini et al., Phys. Rev. B, vol.83, p.81413, 2011.

R. Schuster, C. Habenicht, M. Ahmad, M. Knupfer, and B. Büchner, Phys. Rev. B, vol.97, p.41201, 2018.

C. Ho, C. Chang, and M. Lin, Phys. Rev. B, vol.93, p.75437, 2016.

, In principle all parameters should be adjusted; in particular the gap equal to 2 should be reduced, but as far as orders of magnitude are concerned this will not modify our discussion

, Similar analyses have been performed in the case of carbon layer stackings, vol.61

A. Marini, C. Hogan, M. Grüning, and D. Varsano, Comput. Phys. Commun, vol.180, p.1392, 2009.

C. Barreteau, F. Ducastelle, and T. Mallah, J. Phys.: Condens. Matter, vol.29, p.465302, 2017.

J. Charlier, X. Gonze, and J. Michenaud, Carbon, vol.32, p.289, 1994.