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Abstract 

Chlorination of seawater is one of the most effective technologies for industrial 

biofouling control. However, chlorination leads to the formation of halogenated 

chlorination byproducts (CBPs) associated with potential risks to environmental and 

human health. The present study investigated the occurrence and distribution of CBPs 

in the Gulf of Fos, a semi-enclosed bay where chlorinated effluents of multiple 

industrial plants are discharged. Seawater samples (surface and bottom) were 

collected at 24 sampling stations, with some near industrial outlets and others 

dispersed throughout the bay. Sediment samples were also collected at 10 sampling 

stations. Physicochemical parameters including water temperature, pH, salinity, 

bromide content, and free and total residual oxidant were determined. Several 

chemical classes of CBPs including trihalomethanes, haloacetic acids, 



haloacetonitriles, trihaloacetaldehydes, and halophenols were analyzed. Bromoform 

was the most abundant CBP in seawater, and it was detected at most of the sampling 

stations of the bay with highest concentrations occurring near the industrial effluent 

outlets. Dibromoacetic acid was the second most abundant CBP at most of the sites 

followed by dibromoacetonitrile. Other detected CBPs included tribromoacetic acid, 

bromochloroacetonitrile, and bromal hydrate. To our knowledge, the concentration of 

the latter CBP was reported here for the first time in the context of industrial seawater 

chlorination. In sediments, two bromine-containing halophenols (2-chloro-4-

bromophenol and 2,4,6-tribromophenol) were detected at two sampling stations. 

Ecotoxicological assays and risk assessment studies based on the detected 

environmental concentrations are warranted to elucidate the impacts of marine CBP 

contamination. 
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Introduction 

The use of seawater in industrial cooling or heating is a common practice in many 

parts of the world. One of the primary operational problems of using seawater in such 

processes is biofouling which can result from the growth of microorganisms on 

surfaces where they form biofilms or the growth of macro-organisms such as clams. 

Biofilms tend to stick to heat-exchange surfaces, thereby significantly reducing heat-

transfer coefficients. In some cases, excessive biofouling can lead to plugging of heat 

exchangers. There are several techniques for preventing biofouling of both types. The 

use of chlorine to avoid biofouling is among the most common procedures (Khalanski 



and Jenner, 2012). Chlorine is added either in the gaseous form or in the aqueous 

form of sodium hypochlorite solution, typically at doses of 0.5–1.5 mg/L (expressed 

as Cl2) (Allonier et al., 1999a, 1999b; Ma et al., 2011; Khalanski and Jenner, 2012). 

When chlorine is added to seawater, it reacts with organic and inorganic compounds 

present in seawater leading to the formation of a range of chlorination byproducts 

(CBPs) (Boudjellaba et al., 2016). Factors such as the initial chlorine dose, 

temperature, pH, constitution of seawater and ultimately presence of contaminants 

(natural or anthropogenic) can influence these reactions leading to significant 

differences in the nature and levels of the different formed CBPs (Allonier et al., 

1999). The release of CBPs into the environment constitutes a concern from 

environmental and health standpoints. Even if the levels of CBPs formed in seawater 

tend to be low, their effects on the long term cannot be neglected since they are 

usually contained in large volumes of water over extended geographical area and for 

prolonged periods of time (Boudjellaba et al., 2016). In this way, chlorine itself and 

its byproducts can constitute a threat to marine ecosystems (Taylor, 2006; Deng et al., 

2010; Pignata et al., 2012; Khalanski and Jenner, 2012). Furthermore, the spectrum of 

possible adverse risks is not limited to the environment since potential volatilization 

and subsequent photolysis of CBPs into reactive species in the atmosphere may affect 

human health upon exposure to CBPs or their products (Quack and Wallace, 2003; 

Parinet et al., 2012). Most of studies conducted previously on CBPs in the marine 

environment focused on nuclear and thermal power plants (Allonier et al., 1999; 

Khalanski and Jenner, 2012). These investigations looked into a limited number of 

compounds in cooling water effluents, often at a single or a few discharge points in 

the open coast. To date, data about the contamination of seawater and marine 

sediments exposed to multiple industrial chlorinated effluents remain very scarce. The 



present study investigated the contamination of seawater and sediments by CBPs in 

the Gulf of Fos, Southeastern France. The Gulf of Fos is a semi-enclosed bay that 

favors water confinement in some of its back-ends and receives the plumes of the 

second greatest Mediterranean river, namely Rhône river, among other freshwater 

inputs (Ulses et al., 2005). The Gulf of Fos hosts the largest port of trade in France 

and in the Mediterranean Sea (Marseille-Fos Port) along with a major industrial zone 

that includes steel, petrochemical, waste incineration, and cement industries as well as 

gas and electricity power plants. The aim of the study was to characterize the 

contamination of the bay by halogenated CBPs. For this reason, several classes of 

halogenated CBPs including trihalomethanes (THMs), haloacetic acids (HAAs), 

haloacetonitriles (HANs), trihaloacetaldehydes (THA), and halophenols (HPs) were 

analyzed in seawater and marine sediments obtained from the vicinity of the industrial 

effluents and at other sites throughout the bay. Global physicochemical parameters 

such as temperature, pH, salinity, bromide concentration, total organic carbon (TOC), 

total nitrogen (TN), and chlorine levels were also determined. Data provided by this 

study are crucial for any future risk assessment study for the marine pollution in the 

Gulf of Fos or similar marine environments. 

Materials and Methods 

Study Site  

The study investigated the Gulf of Fos (Figure 1) located in Southeastern France, on 

the Mediterranean, and at about 50 km from the city of Marseille. Average water 

depth in the Gulf is of about 20 m. The Gulf of Fos is a semi-enclosed bay which 

receives several freshwater inputs with the main input being from the Rhône River. 

Other minor inputs include the Berre Lagoon, irrigation and navigation canals. The 
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Fig. 1. Overview of the Gulf of Fos
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sampling stations 9x and 10x) which discharge chlorinated water (by 

electrochlorination). Metal industry (sampling station 11x) and oil refineries 

(sampling station 13x) also discharge chlorinated seawater at flows exceeding 10,000 

m3/h.  

Sample Collection 

Sampling campaign was performed during spring (24, 25, and 26 April 2017). When 

sampling was performed, sustained southeast wind (35-40 km/h on average according 

to MétéoFrance, Istres) with gusts. The different sampling stations were located 

within the Gulf of Fos and included the main industrial outlets (sampling station 

names end with x) (Figure 1). Water samples were collected at all the 24 sampling 

stations. At each sampling station, seawater samples were collected at the surface 

(depth between 0 to 50 cm) and at 7m depth (or the bottom at the stations where the 

bottom is at depth < 7 m). Seawater samples were collected using a 5-L Niskin bottle 

(General Oceanics, USA). For the analysis of CBPs, sample aliquots (1 L) were 

placed in amber glass bottles with PTFE-lined screw caps and ascorbic acid was 

rapidly added to these bottles to quench any residual free chlorine. For the analysis of 

global physicochemical parameters including bromide ion concentration, TOC, TN, 

and determination of free and total chlorine, sample aliquots (1 L) were placed in 

amber glass bottles with PTFE-lined screw caps to which no ascorbic acid was added. 

Samples were stored at 4 °C away from sunlight and extracted within 24 h from 

collection. Physicochemical parameters including pH, temperature, and salinity were 

determined on-site using a CTD-type multi-parameter probe (MS5, OTT Hydrolab, 

Germany).  



Sediments were collected using an Ekman grab sampler at 10 sampling stations (8p, 

11x, 12x, 13x, 14m, 15m, 17m, 19m, 22m, 24m). The collected sediments were stored 

at 4 °C away from sunlight. 

Chemicals 

Analytical standards including THM calibration mix, halogenated volatile mix 

(containing HANs), and HAA esters calibration mix, 2,3-dibromopropionic acid 

solution, and the THA chloral hydrate were purchased from Supelco (USA). The 

brominated THA tribromoacetaldehyde (97%) was purchased from Aldrich (United 

Kingdom) and was used to generate its hydrated form bromal hydrate (BH) in 

ultrapure water (Millipore, resistivity >18 MΩ cm). HPs 2-bromo-4-chlorophenol 

(98%) and 2,6-dibromophenol (99%) were purchased from Alfa Aesar (Germany), 

and 2,4-dibromophenol (95%) and 2,4,6-tribromophenol (99%) were purchased from 

Sigma-Aldrich (USA). A standard stock solution of each compound was prepared in 

methyl tert-butyl ether (MTBE, purity 99.8%) which was purchased from Merck 

(Germany). L-ascorbic acid, crystalline, reagent grade was purchased from Sigma 

(China). Sulfuric acid, analytical grade reagent, was purchased from Fisher Scientific 

(UK). For plotting the calibration curve, artificial seawater was spiked with the 

mother solutions at different concentrations and the resulting solutions were treated 

according to the methods described hereby for samples. Artificial seawater (ASW) 

was prepared according ASTM International standard practice for the preparation of 

substitute ocean water (method D1141-98, 2013). 

Seawater sample preparation 

For the analysis of THMs, HANs, THAs sample aliquots (50 mL) were first adjusted 

to a pH value ranging between 4.5 and 5.5 by adding sulfuric acid. For the different 



chemical classes, specific internal standards were added. For THMs, HANs and BH, 

the internal standard 1,2,3-trichloropropane was used according to U.S.EPA 551 .1 

(Munch and Hautman, 1995). Samples were then extracted by liquid-liquid extraction 

(LLE) by adding MTBE (5 mL) and shaking manually for 3 min. Then, the organic 

phase was collected for analysis. For the analysis of HAAs, U.S.EPA method 552.3 

(Domino et al., 2003) was used with slight modifications. In brief, sample aliquots (40 

mL) were acidified to a pH < 1 by adding concentrated sulfuric acid and extracted 

with MTBE (4 mL). 2,3-dibromopropionic acid was added to the extracts as a 

surrogate. After LLE, the organic phase containing the HAAs was collected and 

transferred into 15 mL vials to which acidified methanol was added and placed in a 

water bath at 50 °C for 2 h for derivation (methylation). The vials were then cooled, 

and 4 mL of saturated sodium bicarbonate solution were added before collecting the 

organic phase containing the HAA esters in chromatographic vials. For the analysis of 

HPs, derivation (acetylation) and extraction by LLE were conducted as described 

previously by Allonier et al. (1999) with some modifications. In brief, 50 mL samples 

were mixed manually during 4 minutes with 10 g of sodium carbonate and 5 mL of 

acetic anhydride to derivatize the HPs. Samples were then extracted with 2.5 mL of 

MTBE containing the internal standard 2,4,6 trichlorophenol. The organic phases 

were then collected and dried with sodium sulfate before analysis.  

Analytical methods  

Free residual chlorine and total chlorine were measured by the colorimetric DPD 

method using a portable spectrophotometer (AQUALYTIC-AL 800, Germany). 

Bromide levels in water were measured by an ICS-3000 Dionex ion chromatography 

system using a 30 mM NaOH eluent with a flow rate of 1.5 ml/min at 30 °C. Total 

Organic Carbon (TOC) and Total Nitrogen (TN) were measured using high 



temperature catalytic oxidation technique (Multi N/C 2100, Analytik Jena, Germany). 

The pre-treated sample was injected (50 µl) into the furnace filled with a Pt 

preconditioned catalyst. The combustion was realized at 800 °C and the combustion 

products were carried by high purity oxygen (Linde Gas) allowing detection of CO2 

by non-dispersive infrared (NDIR) and detection of NO by chemiluminescence 

(CLD). Organic extracts containing CBPs were analyzed using a gas chromatograph 

coupled to a 63Ni electron-capture detector (GC-ECD model Clarus 580, Perkin 

Elmer, Norwalk, CT, USA). An Elite 5MS capillary column was used for the 

separation. Helium 5.0 was used as a carrier gas at 1 mL/min. Nitrogen was used as a 

make-up gas at 30 mL/min. For the analysis of THMs, HANs, HPs and BH the 

temperature program was as follows: initially 35 °C increasing to 145 °C at a rate of 

10°C/min, then at a rate of 20 °C/min up to 225 °C and finally at 10 °C/min to 260 

°C, held for 2 min. For the analysis of HAAs, the temperature was initially set to 40 

°C, then increased to 75 °C at a rate of 15 °C/min, then increased to 100 °C at 5 

°C/min, and finally temperature reached 135 °C at 10 °C/min which and held 2 min. 

Analytes were qualified using procedural standard calibration. Calibrations were 

performed at concentrations starting from 10 ng/L to 10 µg/L. At each concentration 

order, external calibrations were performed using a set of 7 standard solutions. The 

solutions were prepared by adding aliquots of the standard stock solution in artificial 

seawater and later conducting the same treatment as that of samples. Seawater and 

purified water reagent blanks were included with each sequence. Analysis of samples 

was conducted in duplicate. The detection limits (DL) and the quantification limits 

(QL) for the analyzed chemicals and parameters and their estimation procedure are 

presented in supplementary information (Table S1).  



Maps were produced using the software: R (R Core Team, 2015) and Inkscape 

(Inkscape, 2015). 

Sediment sample preparation 

Sediments were brought to room temperature. Extraneous material was removed prior 

to homogenization. Sediment samples were homogenized in pre-cleaned collection 

jars by stirring vigorously with stainless steel spatulas. Dry weights were determined 

by placing sample aliquots in an oven at 105 °C and weighed at intervals of 24 h until 

successive weight differences became less than 4%. For the analysis of HPs in 

sediments, the method was inspired from Lampi et al. (1992) with modifications. An 

aliquot (20 g) of wet sediments was weighed, 50 mL of 1M NaOH solution and 

internal standard (50 µL) of 2,4,6-trichlorophenol solution (1 mg/L) were added. 

Then, 50 mL of hexane were added to the sample and the whole kept in an ultrasonic 

bath for 10 min. The hexane phase was then discarded, and the aqueous phase was 

collected and introduced into 65-mL glass vials with PTFE-lined screw caps which 

were centrifuged at 2000 rpm for 10 min. 40 mL of the resulting supernatant was then 

collected and was treated according to protocols used for the analysis of HPs in water 

samples described above. 

Results and Discussion 

Physicochemical parameters 

At the different sampling stations, physicochemical parameters including water 

temperature, pH, salinity, TOC, TN, bromide content, and levels of free residual 

chlorine, and total chlorine were determined. Table S2 presents the measurements of 

the physicochemical parameters at the sampling stations. Very little variation was 

observed in the pH among the different sampling points located throughout the gulf 
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homogenous among the different sampling stations within the Gulf (Table S2). 

Bromide levels were relatively high even at points close to the intrusion of freshwater 

of the Rhone River. Bromide levels at sampling stations 3p to 8p ranged from 46.6 to 

58.21 at the surface, and from 53.75 to 69.34 at the bottom/depth. Temperature at the 

surface and in deep water are presented in Table S2. Excluding outlets, water 

temperatures at the bottom were globally homogeneous across the Gulf. Water 

temperature was 14.5 to 15 ° C at the surface and 14 ° C at the bottom/depth. This 

very little gradient is compatible with the agitated conditions that favor the mixing of 

water bodies. The temperature of freshwater (1c, 2c) was slightly higher (15 to 16 

°C). Near the outlets at sampling stations 9x, 10x, 11x, temperatures were slightly 

higher at the surface (up to 18.9 °C) and the bottom (up to 19.8 °C), due to the 

discharge of heated seawater from the nearby industries. In general, the surface 

temperatures at the sampling stations close to the shore were higher than offshore 

stations (Figure 3).  

 

  



Figure 3. Variation of surface water temperature (in °C) at the different sampling 
stations  

 

Occurrence of chlorination byproducts (CBPs) in seawater 

The levels of the CBPs identified in the Gulf of Fos are presented in Table S3. Several 

CBPs belonging to different chemical classes were detected in the Gulf. The main 

detected CBPs included bromoform, dibromoacetic acid (DBAA), 

dibromoacetonitrile (DBAN), tribromoacetic acid (TBAA), and BH. Low 

concentrations of bromochloroacetonitrile (BCAN) were also detected near some 

outlets (sampling stations 8p, 9x, and 10x). Chloroform was detected at some 

sampling stations at levels below the QL. The occurrence of predominantly 

brominated CBPs in chlorinated seawater can be explained by the formation of 

bromine upon the addition of chlorine to seawater. This speciation is in agreement 

with previous studies that reported the formation of brominated byproducts in 

chlorinated bromide-containing water (Ged and Boyer, 2014). In the presence of 

appreciable amounts of bromide ions, chlorine oxidizes bromide ions and forms 

hypobromous acid and hypobromite ions (Singer, 1999). As an oxidant, bromine is 

stronger than chlorine and reacts 10 times faster with organic matter (Westerhoff et 

al., 2004). The reactions leading to the formation of bromine in bromide-rich water 

such as seawater are as follows (Heeb et al., 2014): 

HOCl + Br- → HOBr + Cl -  k1 = (1.55-6.84).103 M-1 s-1 (1) 

ClO- + Br- → BrO- + Cl-  k2 = 9.10-4 M-1 s-1 (2) 

Although HOBr and OBr- are the most abundant species involved in these reactions, 

several bromine species can react with organic compounds present in seawater (Heeb 



et al., 2014; Manasfi et al., 2017). Bromine species such as Br2, Br2O, BrOCl, and 

BrCl are less abundant but more reactive than HOBr and OBr- and have been shown 

to contribute to bromination of some organic compounds (Sivey et al., 2013). Table 1 

shows the equilibrium concentrations of bromine species when seawater containing 

67 mg/L bromide, at pH 8.05, is chlorinated with active chlorine (2 mg/L). These 

concentrations were estimated using PHREEQC (Parkhurst and Appelo, 2013).  

 

The levels of CBPs were highest at the sampling stations located near the outlets 

where chlorinated industrial effluents are released (stations 8p, 9x, 10x, 11x, and 

13x). At these outlets, the concentration of bromoform ranged from 0.17 to 1.95 µg/L 

(at the surface) and from 0.46 to 2.36 µg/L (at the bottom). At the sampling station 

12x (in the vicinity of the outlet of LNG Fos-Cavaou terminal), surprisingly low 

concentrations were detected. This aberration is probably due to the dislocation of the 

sampling Niskin bottle under the effect of wind during sampling. At its exit at sea, 

station 12x, at 150 m from the shore, strong wind and current of south-east, made the 

measurements and sampling very difficult. Throughout the studied area of the Gulf, 

bromoform concentrations ranged from 0.05 to 1.95 µg/L and from 0.06 to 2.3 µg/L 

at the surface and the bottom, respectively. The slightly higher concentrations of 



bromoform at the bottom compared to the surface may result from accelerated 

volatilization on the surface because of wind and slightly higher temperatures. For the 

other CBPs, distinctive discrepancies between bottom and surface levels were not 

observed. DBAA concentrations ranged from 0.35 to 1.40 µg/L and from 0.39 to 1.23 

µg/L at the surface and the bottom, respectively. DBAN concentrations ranged from 

0.049 to 0.67 µg/L and from 0.05 to 0.79 µg/L at the surface and the bottom, 

respectively. BCAN was detected at concentrations ranging from 0.04 to 0.05 µg/L at 

the surface and the bottom. BH concentrations ranged from 0.075 to 0.13 µg/L and 

from 0.06 to 0.18 µg/L at the surface and the bottom, respectively. Overall, the 

concentrations of CBPs detected in the Gulf of Fos in the present study were 

relatively low compared to levels previously reported for these compounds in 

seawater exposed to industrial chlorinated effluents. In a survey conducted in coastal 

power stations, at the point of discharge, bromoform concentrations varied from 3.1 

µg/L to 29.20 µg/L and DBAN concentrations varied from 0.10 µg/L to 11.39 

(Khalanski and Jenner, 2012). Since many of the CBPs are volatile, increased 

volatilization with accentuated winds could be one reason. Another reason could be 

related to decrease in chlorination activity at some of the plants since water 

temperature were not very high which naturally decreases biofouling.  

Despite the low concentrations, bromoform was still detected in the Gulf of Fos even 

at sampling stations that were relatively distant from the outlets (such as 14m, 15m, 

16m, 17m, 19m, 20m, and 24m). The concentrations of bromoform at these sampling 

stations away from the outlets ranged from 0.06 to 0.57 µg/L and from 0.06 to 0.64 

µg/L at the surface and the bottom respectively. These concentrations are superior to 

the typical background levels of bromoform emitted by marine algae in seawater that 

is not exposed to chlorinated effluents. The latter has been estimated at 0.025 μg/L, 



and rarely exceed 0.1 μg/L unless when extensive beds of macro-algae are present, 

which is not the case in the Gulf of Fos (Quack and Wallace, 2003). The diffusion of 

bromoform across the Gulf of Fos is represented in Figure 4. This figure shows that 

shows contamination of the Gulf of Fos with bromoform at concentrations lower than 

what is detected near the outlets, yet higher than what is found in uncontaminated 

seawater.  

 

Distribution of CBPs in seawater 

Among the detected CBPs, bromoform was the most abundant species at most of the 

sampling stations (Figure 5).  



 

This finding is in agreement with previous studies that investigated the occurrence of 

CBPs in seawaters exposed to chlorinated industrial effluents (Allonier et al., 1999; 

Boudjellaba et al., 2016; Jenner et al., 1997). 

Another THM, dibromochloromethane was detected at levels below its QL. DBAA 

was the second most abundant CBP at all the sampling sites except station 11x where 

DBAN constituted the second most abundant species. This discrepancy can be 

attributed to the presence of high levels of nitrogen-containing organic compounds 

near the industrial outlet 11x. Furthermore, pH is another factor that has been shown 

to affect the speciation of CBPs (Cimetiere et al., 2010). Hansen et al. (2012) 

demonstrated that with decreasing pH, THM formation was reduced while HAN 

formation increased and HAA formation remained constant. However, in this study 

the influence of pH on the distribution of CBPs can be ruled out since the pH was 

largely homogenous across the Gulf (pH = 8.1 – 8.2). While DBAA was generally the 

second most abundant CBP, the tribrominated HAA TBAA was detected only at the 

sampling station 8p. This finding may be explained by the lower stability of TBAA in 

comparison to DBAA (Manasfi et al., 2016; Zhang and Minear, 2002). It has been 



reported that TBAA may decompose to form bromoform in aqueous solutions (Zhang 

and Minear, 2002). HPs were not detected in seawater samples. 

Occurrence of brominated halophenols in sediments 

Sediments were collected at the sampling stations (8p, 11x, 12x, 13x, 14m, 15m, 17m, 

19m, 22m, 24m). Two bromine-containing HPs were detected at the sampling stations 

22m and 13x at concentrations in the order of ng/g level (of dry weight). At sampling 

station 22m, 2-chloro-4-bromophenol and 2,4,6-tribromophenol were detected at 1.8 

and 2.1 ng/g (of dry weight). At sampling station 13x, the two HPs were detected at 

0.3 and 1.5 ng/g (dry weight), respectively. To our knowledge, this is the first study to 

report the levels of some halophenols in marine sediments obtained from the vicinity 

of industrial chlorinated effluents. Although the detected HPs were brominated and 

therefore compatible with the general speciation of CBPs determined in seawater in 

the Gulf, further investigations are necessary to discriminate whether the detected 

halophenols originate from the chlorination of seawater or are produced from algal 

species and biota. 

Conclusions 

Seawater in the Gulf of Fos which is exposed to multiple industrial chlorinated 

effluents contained predominantly the brominated CBPs bromoform, DBAA, DBAN, 

and BH. Other CBPs including TBAA and BCAN were also detected at some 

sampling stations. The levels of CBPs were relatively low compared to levels reported 

in the literature for seawater exposed to chlorinated effluents from nuclear plants and 

other industries which employ chlorination. Despite the low levels, bromoform was 

found at sampling stations relatively far from the chlorinated effluent outlets at 

concentrations superior to what is found naturally in uncontaminated seawater. In 



sediments, two HPs namely 2-chloro-4-bromophenol and 2,4,6-tribromophenol were 

detected at two sampling stations. Since the concentrations of CBPs depend on many 

factors including meteorological conditions, season, and chlorination operations in the 

nearby industrial plants, future investigations that assess the levels of CBPs under 

different meteorological conditions and season are warranted. Furthermore, the 

importance of risk assessment studies that estimate the impact of the detected 

concentrations of CBPs on the environment is highlighted.  
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