C. Allene and R. Cossart, Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations?, The Journal of Physiology, vol.5, issue.Suppl 2, pp.83-91, 2010.
DOI : 10.1038/nn0602-850

URL : https://hal.archives-ouvertes.fr/hal-01848197

C. Allene, A. Cattani, J. Ackman, P. Bonifazi, L. Aniksztejn et al., Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex, Journal of Neuroscience, vol.28, issue.48, pp.12851-12863, 2008.
DOI : 10.1523/JNEUROSCI.3733-08.2008

URL : https://hal.archives-ouvertes.fr/inserm-00483521

G. Ascoli, L. Alonso-nanclares, S. Anderson, G. Barrionuevo, R. Benavides-piccione et al., Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex, Nat Rev Neurosci, vol.9, pp.557-568, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00292588

R. Batista-brito and G. Fishell, Chapter 3 The Developmental Integration of Cortical Interneurons into a Functional Network, Curr Top Dev Biol, vol.87, pp.81-118, 2009.
DOI : 10.1016/S0070-2153(09)01203-4

Y. Ben-ari, E. Cherubini, R. Corradetti, and J. Gaiarsa, Giant synaptic potentials in immature rat CA3 hippocampal neurones., The Journal of Physiology, vol.416, issue.1, pp.303-325, 1989.
DOI : 10.1113/jphysiol.1989.sp017762

A. Blankenship and M. Feller, Mechanisms underlying spontaneous patterned activity in developing neural circuits, Nature Reviews Neuroscience, vol.296, issue.1, pp.18-29, 2010.
DOI : 10.1111/j.1528-1167.2006.00839.x

P. Bonifazi, M. Goldin, M. Picardo, I. Jorquera, A. Cattani et al., GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks, Science, vol.324, issue.5927, pp.1419-1424, 2009.
DOI : 10.1126/science.1169957

URL : https://hal.archives-ouvertes.fr/inserm-00483216

D. Bortone and F. Polleux, KCC2 Expression Promotes the Termination of Cortical Interneuron Migration in a Voltage-Sensitive Calcium-Dependent Manner, Neuron, vol.62, issue.1, pp.53-71, 2009.
DOI : 10.1016/j.neuron.2009.01.034

R. Buss and R. Oppenheim, Role of programmed cell death in normal neuronal development and function, Anatomical Science International, vol.23, issue.4, pp.191-197, 2004.
DOI : 10.1002/(SICI)1097-4695(199705)32:5<502::AID-NEU5>3.0.CO;2-9

S. Butt, M. Fuccillo, S. Nery, S. Noctor, A. Kriegstein et al., The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype, Neuron, vol.48, issue.4, pp.591-604, 2005.
DOI : 10.1016/j.neuron.2005.09.034

J. Corbin and S. Butt, Developmental mechanisms for the generation of telencephalic interneurons, Developmental Neurobiology, vol.109, issue.Suppl, pp.710-732, 2011.
DOI : 10.1016/S0092-8674(02)00677-3

R. Cossart, The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function, Current Opinion in Neurobiology, vol.21, issue.1, pp.160-168, 2011.
DOI : 10.1016/j.conb.2010.10.003

V. Crépel, D. Aronov, I. Jorquera, A. Represa, Y. Ben-ari et al., A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus, Neuron, vol.54, issue.1, pp.105-120, 2007.
DOI : 10.1016/j.neuron.2007.03.007

Y. Deguchi, F. Donato, I. Galimberti, E. Cabuy, and P. Caroni, Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus, Nature Neuroscience, vol.23, issue.4, pp.495-504, 2011.
DOI : 10.1038/nprot.2006.169

D. Marco-garcía, N. Karayannis, T. Fishell, and G. , Neuronal activity is required for the development of specific cortical interneuron subtypes, Nature, vol.27, issue.7343, pp.351-355, 2011.
DOI : 10.1523/JNEUROSCI.1807-07.2007

D. Doischer, J. Hosp, Y. Yanagawa, K. Obata, J. P. Vida et al., Postnatal Differentiation of Basket Cells from Slow to Fast Signaling Devices, Journal of Neuroscience, vol.28, issue.48, pp.12956-12968, 2008.
DOI : 10.1523/JNEUROSCI.2890-08.2008

URL : http://www.jneurosci.org/content/jneuro/28/48/12956.full.pdf

G. Fishell and R. B. , Mechanisms of Inhibition within the Telencephalon: ???Where the Wild Things Are???, Annual Review of Neuroscience, vol.34, issue.1, pp.535-567, 2011.
DOI : 10.1146/annurev-neuro-061010-113717

URL : http://europepmc.org/articles/pmc3556485?pdf=render

T. Freund and G. Buzsáki, Interneurons of the hippocampus, Hippocampus, vol.495, issue.1, pp.347-470, 1996.
DOI : 10.1016/0006-8993(89)91231-6

URL : https://hal.archives-ouvertes.fr/inserm-00484796

O. Garaschuk, E. Hanse, and A. Konnerth, Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus, The Journal of Physiology, vol.257, issue.1, pp.219-236, 1998.
DOI : 10.1016/0896-6273(95)90236-8

A. Golbs, B. Nimmervoll, J. Sun, I. Sava, and H. Luhmann, Control of Programmed Cell Death by Distinct Electrical Activity Patterns, Cerebral Cortex, vol.407, issue.6805, pp.1192-1202, 2011.
DOI : 10.1038/35037739

URL : https://academic.oup.com/cercor/article-pdf/21/5/1192/1186446/bhq200.pdf

S. Guerrier, J. Coutinho-budd, T. Sassa, A. Gresset, N. Jordan et al., The F-BAR Domain of srGAP2 Induces Membrane Protrusions Required for Neuronal Migration and Morphogenesis, Cell, vol.138, issue.5, pp.990-1004, 2009.
DOI : 10.1016/j.cell.2009.06.047

URL : https://doi.org/10.1016/j.cell.2009.06.047

S. Hennou, I. Khalilov, D. Diabira, Y. Ben-ari, and H. Gozlan, and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus, European Journal of Neuroscience, vol.11, issue.2, pp.197-208, 2002.
DOI : 10.1016/S0959-4388(00)00246-4

URL : https://hal.archives-ouvertes.fr/inserm-00484849

G. Miyoshi, J. Hjerling-leffler, T. Karayannis, V. Sousa, S. Butt et al., Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons, Journal of Neuroscience, vol.30, issue.5, pp.1582-1594, 2010.
DOI : 10.1523/JNEUROSCI.4515-09.2010

URL : http://www.jneurosci.org/content/jneuro/30/5/1582.full.pdf

W. Moody and M. Bosma, Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells, Physiological Reviews, vol.85, issue.3, pp.883-941, 2005.
DOI : 10.1111/j.1469-7793.2000.00571.x

URL : http://physrev.physiology.org/content/physrev/85/3/883.full.pdf

B. Okaty, M. Miller, K. Sugino, C. Hempel, and S. Nelson, Transcriptional and Electrophysiological Maturation of Neocortical Fast-Spiking GABAergic Interneurons, Journal of Neuroscience, vol.29, issue.21, pp.7040-7052, 2009.
DOI : 10.1523/JNEUROSCI.0105-09.2009

URL : http://www.jneurosci.org/content/jneuro/29/21/7040.full.pdf

A. , Morphophysiological Development of GABA Neurons J. Neurosci, pp.6688-6698, 2012.

M. Petrovic and T. Hummel, Temporal identity in axonal target layer recognition, Nature, vol.67, issue.7223, pp.800-803, 2008.
DOI : 10.1038/nature07407

M. Picardo, P. Guigue, P. Bonifazi, R. Batista-brito, A. C. Ribas et al., Pioneer GABA Cells Comprise a Subpopulation of Hub Neurons in the Developing Hippocampus, Neuron, vol.71, issue.4, pp.695-709, 2011.
DOI : 10.1016/j.neuron.2011.06.018

URL : https://hal.archives-ouvertes.fr/hal-01833210

S. Sipilä, K. Huttu, I. Soltesz, J. Voipio, and K. K. , Depolarizing GABA Acts on Intrinsically Bursting Pyramidal Neurons to Drive Giant Depolarizing Potentials in the Immature Hippocampus, Journal of Neuroscience, vol.25, issue.22, pp.5280-5289, 2005.
DOI : 10.1523/JNEUROSCI.0378-05.2005

L. Stoppini, P. Buchs, and D. Muller, A simple method for organotypic cultures of nervous tissue, Journal of Neuroscience Methods, vol.37, issue.2, pp.173-182, 1991.
DOI : 10.1016/0165-0270(91)90128-M

N. Tamamaki, Y. Yanagawa, R. Tomioka, J. Miyazaki, K. Obata et al., Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse, The Journal of Comparative Neurology, vol.326, issue.1, pp.60-79, 2003.
DOI : 10.1042/bj3260573

L. Tricoire, K. Pelkey, B. Erkkila, B. Jeffries, X. Yuan et al., A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity, Journal of Neuroscience, vol.31, issue.30, pp.10948-10970, 2011.
DOI : 10.1523/JNEUROSCI.0323-11.2011

R. Tyzio, A. Represa, I. Jorquera, Y. Ben-ari, H. Gozlan et al., The Establishment of GABAergic and Glutamatergic Synapses on CA1 Pyramidal Neurons is Sequential and Correlates with the Development of the Apical Dendrite, The Journal of Neuroscience, vol.19, issue.23, pp.10372-10382, 1999.
DOI : 10.1523/JNEUROSCI.19-23-10372.1999

URL : https://hal.archives-ouvertes.fr/inserm-00487269

R. Tyzio, A. Ivanov, C. Bernard, G. Holmes, Y. Ben-ari et al., Membrane Potential of CA3 Hippocampal Pyramidal Cells During Postnatal Development, Journal of Neurophysiology, vol.90, issue.5, pp.2964-2972, 2003.
DOI : 10.1113/jphysiol.1991.sp018864

URL : https://hal.archives-ouvertes.fr/inserm-00484799

D. Wang and A. Kriegstein, GABA Regulates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation, Journal of Neuroscience, vol.28, issue.21, pp.5547-5558, 2008.
DOI : 10.1523/JNEUROSCI.5599-07.2008

Q. Xu, I. Cobos, D. L. Cruz, E. Rubenstein, J. Anderson et al., Origins of Cortical Interneuron Subtypes, Journal of Neuroscience, vol.24, issue.11, pp.2612-2622, 2004.
DOI : 10.1523/JNEUROSCI.5667-03.2004

Y. Yu, R. Bultje, X. Wang, and S. Shi, Specific synapses develop preferentially among sister excitatory neurons in the neocortex, Nature, vol.7, issue.7237, pp.501-504, 2009.
DOI : 10.1101/SQB.1990.055.01.029