B. Ari, Y. Cherubini, E. Corradetti, R. Gaiarsa, and J. L. , Giant synaptic potentials in immature rat CA3 hippocampal neurones, J. Physiol, vol.416, pp.303-325, 1989.

P. Bonifazi, GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks, Science, vol.324, issue.5927, pp.1419-1424, 2009.
DOI : 10.1126/science.1169957

URL : https://hal.archives-ouvertes.fr/inserm-00483216

R. Miles and R. Wong, Single neurones can initiate synchronized population discharge in the hippocampus, Nature, vol.298, issue.5941, pp.371-373, 1983.
DOI : 10.1113/jphysiol.1964.sp007504

L. M. De-la-prida, G. Huberfeld, I. Cohen, and R. Miles, Threshold Behavior in the Initiation of Hippocampal Population Bursts, Neuron, vol.49, issue.1, pp.131-142, 2006.
DOI : 10.1016/j.neuron.2005.10.034

L. Wittner and R. Miles, Factors defining a pacemaker region for synchrony in the hippocampus, The Journal of Physiology, vol.24, issue.3, pp.867-883, 2007.
DOI : 10.1523/JNEUROSCI.0765-04.2004

M. A. Picardo, Pioneer GABA Cells Comprise a Subpopulation of Hub Neurons in the Developing Hippocampus, Neuron, vol.71, issue.4, pp.695-709, 2011.
DOI : 10.1016/j.neuron.2011.06.018

S. Namiki, T. Sasaki, N. Matsuki, and Y. Ikegaya, Regional Difference in Stainability with Calcium-Sensitive Acetoxymethyl-Ester Probes in Mouse Brain Slices, International Journal of Neuroscience, vol.6, issue.3, pp.214-226, 2009.
DOI : 10.1016/0896-6273(91)90243-S

I. Khalilov, V. Dzhala, B. Ari, Y. Khazipov, and R. , Dual Role of GABA in the Neonatal Rat Hippocampus, Developmental Neuroscience, vol.21, issue.3-5, pp.310-319, 1999.
DOI : 10.1159/000017380

URL : https://hal.archives-ouvertes.fr/inserm-00486267

M. Zirlinger, L. Lo, J. Mcmahon, A. P. Mcmahon, and D. J. Anderson, Transient expression of the bHLH factor neurogenin-2 marks a subpopulation of neural crest cells biased for a sensory but not a neuronal fate, Proc. Natl Acad. Sci. USA 99, pp.8084-8089, 2002.
DOI : 10.1016/S0960-9822(06)00191-6

V. H. Sousa, G. Miyoshi, J. Hjerling-leffler, T. Karayannis, and G. Fishell, Characterization of Nkx6-2-Derived Neocortical Interneuron Lineages, Cerebral Cortex, vol.8, issue.suppl_1, pp.1-10, 2009.
DOI : 10.1016/S0960-9822(98)70255-6

URL : https://academic.oup.com/cercor/article-pdf/19/suppl_1/i1/17302227/bhp038.pdf

R. Hand, Phosphorylation of Neurogenin2 Specifies the Migration Properties and the Dendritic Morphology of Pyramidal Neurons in the Neocortex, Neuron, vol.48, issue.1, pp.45-62, 2005.
DOI : 10.1016/j.neuron.2005.08.032

I. Ozen, Proliferating neuronal progenitors in the postnatal hippocampus transiently express the proneural gene Ngn2, European Journal of Neuroscience, vol.26, issue.9, pp.2591-2603, 2007.
DOI : 10.1111/j.1460-9568.2007.05541.x

C. Galichet, F. Guillemot, and C. M. Parras, Neurogenin 2 has an essential role in development of the dentate gyrus, Development, vol.135, issue.11, pp.2031-2041, 2008.
DOI : 10.1242/dev.015115

O. Britz, A Role for Proneural Genes in the Maturation of Cortical Progenitor Cells, Cerebral Cortex, vol.16, issue.suppl_1, pp.138-151, 2006.
DOI : 10.1093/cercor/bhj168

T. J. Ellender, W. Nissen, L. L. Colgin, E. O. Mann, and O. Paulsen, Priming of Hippocampal Population Bursts by Individual Perisomatic-Targeting Interneurons, Journal of Neuroscience, vol.30, issue.17, pp.5979-5991, 2010.
DOI : 10.1523/JNEUROSCI.3962-09.2010

URL : http://www.jneurosci.org/content/jneuro/30/17/5979.full.pdf

J. Morante-oria, Subpallial origin of a population of projecting pioneer neurons during corticogenesis, Proc. Natl Acad. Sci. USA, pp.12468-12473, 2003.
DOI : 10.1016/S0165-3806(02)00604-1

K. Mizuseki, K. Diba, E. Pastalkova, and G. Buzsaki, Hippocampal CA1 pyramidal cells form functionally distinct sublayers, Nature Neuroscience, vol.3, issue.9, pp.1174-1181, 2011.
DOI : 10.1038/nrn895

URL : http://europepmc.org/articles/pmc3164922?pdf=render

S. J. Butt, The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype, Neuron, vol.48, issue.4, pp.591-604, 2005.
DOI : 10.1016/j.neuron.2005.09.034

URL : https://doi.org/10.1016/j.neuron.2005.09.034

C. L. Thompson, Genomic Anatomy of the Hippocampus, Neuron, vol.60, issue.6, pp.1010-1021, 2008.
DOI : 10.1016/j.neuron.2008.12.008

URL : https://doi.org/10.1016/j.neuron.2008.12.008

|. Doi, NATURE COMMUNICATIONS ARTICLE NATURE COMMUNICATIONS |, vol.3, p.10, 1038.

M. R. Celio, Calbindin D-28k and parvalbumin in the rat nervous system, Neuroscience, vol.35, issue.2, pp.375-475, 1990.
DOI : 10.1016/0306-4522(90)90091-H

L. Slomianka and F. A. Geneser, Postnatal development of zinc-containing cells and neuropil in the hippocampal region of the mouse, Hippocampus, vol.179, issue.15, pp.321-340, 1997.
DOI : 10.1113/jphysiol.1994.sp020231

D. A. Turner, X. G. Li, G. K. Pyapali, A. Ylinen, and G. Buzsaki, Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo, The Journal of Comparative Neurology, vol.588, issue.4, pp.580-594, 1995.
DOI : 10.1016/B978-0-12-484815-3.50009-8

P. Hemond, M. Migliore, G. A. Ascoli, and D. B. Jaffe, The membrane response of hippocampal CA3b pyramidal neurons near rest: Heterogeneity of passive properties and the contribution of hyperpolarization-activated currents, Neuroscience, vol.160, issue.2, pp.359-370, 2009.
DOI : 10.1016/j.neuroscience.2009.01.082

N. C. Tronson, Segregated Populations of Hippocampal Principal CA1 Neurons Mediating Conditioning and Extinction of Contextual Fear, Journal of Neuroscience, vol.29, issue.11, pp.3387-3394, 2009.
DOI : 10.1523/JNEUROSCI.5619-08.2009

URL : http://www.jneurosci.org/content/jneuro/29/11/3387.full.pdf

T. J. Senior, J. R. Huxter, K. Allen, J. O-'neill, and J. Csicsvari, Gamma Oscillatory Firing Reveals Distinct Populations of Pyramidal Cells in the CA1 Region of the Hippocampus, Journal of Neuroscience, vol.28, issue.9, pp.2274-2286, 2008.
DOI : 10.1523/JNEUROSCI.4669-07.2008

B. H. Bland, J. Konopacki, and R. Dyck, Heterogeneity among hippocampal pyramidal neurons revealed by their relation to theta-band oscillation and synchrony, Experimental Neurology, vol.195, issue.2, pp.458-474, 2005.
DOI : 10.1016/j.expneurol.2005.06.007

J. Epsztein, M. Brecht, and A. K. Lee, Intracellular Determinants of Hippocampal CA1 Place and Silent Cell Activity in a Novel Environment, Neuron, vol.70, issue.1, pp.109-120, 2011.
DOI : 10.1016/j.neuron.2011.03.006

URL : https://doi.org/10.1016/j.neuron.2011.03.006

L. Slomianka, I. Amrein, I. Knuesel, J. C. Sorensen, and D. P. Wolfer, Hippocampal pyramidal cells: the reemergence of cortical lamination, Brain Structure and Function, vol.423, issue.suppl 6, pp.301-317, 2011.
DOI : 10.1002/1096-9861(20000724)423:2<282::AID-CNE7>3.0.CO;2-Z

URL : https://link.springer.com/content/pdf/10.1007%2Fs00429-011-0322-0.pdf

D. K. Bilkey and P. A. Schwartzkroin, Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells, Brain Research, vol.514, issue.1, pp.77-83, 1990.
DOI : 10.1016/0006-8993(90)90437-G

J. Lisman, Bursts as a unit of neural information: making unreliable synapses reliable, Trends in Neurosciences, vol.20, issue.1, pp.38-43, 1997.
DOI : 10.1016/S0166-2236(96)10070-9

E. R. Sanabria, H. Su, and Y. Yaari, -dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy, The Journal of Physiology, vol.561, issue.1, pp.205-216, 2001.
DOI : 10.1016/0006-8993(91)91611-4

S. T. Sipila, K. Huttu, I. Soltesz, J. Voipio, and K. Kaila, Depolarizing GABA Acts on Intrinsically Bursting Pyramidal Neurons to Drive Giant Depolarizing Potentials in the Immature Hippocampus, Journal of Neuroscience, vol.25, issue.22, pp.5280-5289, 2005.
DOI : 10.1523/JNEUROSCI.0378-05.2005

URL : http://www.jneurosci.org/content/jneuro/25/22/5280.full.pdf

Y. Deguchi, F. Donato, I. Galimberti, E. Cabuy, and P. Caroni, Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus, Nature Neuroscience, vol.23, issue.4, pp.495-504, 2011.
DOI : 10.1038/nprot.2006.169

F. Bahner, Cellular correlate of assembly formation in oscillating hippocampal networks in vitro, Proc. Natl Acad. Sci. USA, pp.607-616, 2011.
DOI : 10.1073/pnas.0909615107

J. Csicsvari, B. Jamieson, K. D. Wise, and G. Buzsaki, Mechanisms of Gamma Oscillations in the Hippocampus of the Behaving Rat, Neuron, vol.37, issue.2, pp.311-322, 2003.
DOI : 10.1016/S0896-6273(02)01169-8

G. Buzsaki, Hippocampal sharp waves: Their origin and significance, Brain Research, vol.398, issue.2, pp.242-252, 1986.
DOI : 10.1016/0006-8993(86)91483-6

J. Csicsvari, H. Hirase, A. Mamiya, and G. Buzsaki, Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave???Associated Population Events, Neuron, vol.28, issue.2, pp.585-594, 2000.
DOI : 10.1016/S0896-6273(00)00135-5

URL : https://doi.org/10.1016/s0896-6273(00)00135-5

S. J. Korn, J. L. Giacchino, N. L. Chamberlin, and R. Dingledine, Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition, Journal of Neurophysiology, vol.57, issue.1, pp.325-340, 1987.
DOI : 10.1152/jn.1987.57.1.325

P. Bregestovski and C. Bernard, Excitatory GABA: How a Correct Observation May Turn Out to be an Experimental Artifact, Frontiers in Pharmacology, vol.3, p.65, 2012.
DOI : 10.3389/fphar.2012.00065

URL : http://journal.frontiersin.org/article/10.3389/fphar.2012.00065/pdf

Y. Ben-ari, Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever! Front Cell Neurosci, p.35, 2012.

V. I. Dzhala and K. J. Staley, Excitatory Actions of Endogenously Released GABA Contribute to Initiation of Ictal Epileptiform Activity in the Developing Hippocampus, The Journal of Neuroscience, vol.23, issue.5, pp.1840-1846, 2003.
DOI : 10.1523/JNEUROSCI.23-05-01840.2003

R. K. Wong, R. D. Traub, and R. Miles, Cellular basis of neuronal synchrony in epilepsy, Adv. Neurol, vol.44, pp.583-592, 1986.

Y. Ben-ari, Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, vol.14, issue.2, pp.375-403, 1985.
DOI : 10.1016/0306-4522(85)90299-4

R. Cossart, C. Bernard, and Y. Ben-ari, Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies, Trends in Neurosciences, vol.28, issue.2, pp.108-115, 2005.
DOI : 10.1016/j.tins.2004.11.011

URL : https://hal.archives-ouvertes.fr/inserm-00484541

G. Huberfeld, Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy, Nature Neuroscience, vol.84, issue.5, pp.627-634, 2011.
DOI : 10.1016/j.tins.2007.05.006

URL : https://hal.archives-ouvertes.fr/hal-00795750

G. Miyoshi, Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons, Journal of Neuroscience, vol.30, issue.5, pp.1582-1594, 2010.
DOI : 10.1523/JNEUROSCI.4515-09.2010

URL : http://www.jneurosci.org/content/jneuro/30/5/1582.full.pdf

O. Garaschuk, E. Hanse, and A. Konnerth, Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus, The Journal of Physiology, vol.257, issue.1, pp.219-236, 1998.
DOI : 10.1016/0896-6273(95)90236-8

V. Crepel, A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus, Neuron, vol.54, issue.1, pp.105-120, 2007.
DOI : 10.1016/j.neuron.2007.03.007

URL : https://hal.archives-ouvertes.fr/inserm-00483533

C. Allene, Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex, Journal of Neuroscience, vol.28, issue.48, pp.12851-12863, 2008.
DOI : 10.1523/JNEUROSCI.3733-08.2008

URL : https://hal.archives-ouvertes.fr/inserm-00483521