R. Miles and R. Wong, Single neurones can initiate synchronized population discharge in the hippocampus, Nature, vol.298, issue.5941, pp.371-373, 1983.
DOI : 10.1113/jphysiol.1964.sp007504

P. Bonifazi, GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks, Science, vol.324, issue.5927, p.1419, 2009.
DOI : 10.1126/science.1169957

URL : https://hal.archives-ouvertes.fr/inserm-00483216

M. Brecht, Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex, Nature, vol.444, issue.6976, pp.704-710, 2004.
DOI : 10.1007/s00424-002-0831-z

T. J. Ellender, Priming of Hippocampal Population Bursts by Individual Perisomatic-Targeting Interneurons, Journal of Neuroscience, vol.30, issue.17, pp.5979-5991, 2010.
DOI : 10.1523/JNEUROSCI.3962-09.2010

URL : http://www.jneurosci.org/content/jneuro/30/17/5979.full.pdf

A. R. Houweling and M. Brecht, Behavioural report of single neuron stimulation in somatosensory cortex, Nature, vol.13, issue.7174, pp.65-68, 2008.
DOI : 10.1038/nature06447

C. Y. Li, Burst Spiking of a Single Cortical Neuron Modifies Global Brain State, Science, vol.145, issue.8, pp.643-646, 2009.
DOI : 10.1038/nrn895

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913066

G. Molnar, Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex, PLoS Biology, vol.3, issue.9, p.222, 2008.
DOI : 10.1371/journal.pbio.0060222.sg001

M. London, Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex, Nature, vol.83, issue.7302, pp.123-127, 2010.
DOI : 10.1016/j.tins.2007.09.005

URL : http://europepmc.org/articles/pmc2898896?pdf=render

A. Claridge-chang, Writing Memories with Light-Addressable Reinforcement Circuitry, Cell, vol.139, issue.2, pp.405-415, 2009.
DOI : 10.1016/j.cell.2009.08.034

URL : https://doi.org/10.1016/j.cell.2009.11.010

J. W. Lichtman, A technicolour approach to the connectome, Nature Reviews Neuroscience, vol.278, issue.6, pp.417-422, 2008.
DOI : 10.1038/nrn2391

URL : http://europepmc.org/articles/pmc2577038?pdf=render

L. Luo, Genetic Dissection of Neural Circuits, Neuron, vol.57, issue.5, pp.634-660, 2008.
DOI : 10.1016/j.neuron.2008.01.002

URL : https://doi.org/10.1016/j.neuron.2008.01.002

E. M. Callaway, Transneuronal circuit tracing with neurotropic viruses, Current Opinion in Neurobiology, vol.18, issue.6, pp.617-623, 2008.
DOI : 10.1016/j.conb.2009.03.007

URL : http://europepmc.org/articles/pmc2698966?pdf=render

G. Miesenbock, The Optogenetic Catechism, Science, vol.33, issue.2, pp.395-399, 2009.
DOI : 10.1016/j.cell.2008.01.050

M. Scanziani and M. Hausser, Electrophysiology in the age of light, Nature, vol.60, issue.7266, pp.930-939, 2009.
DOI : 10.1113/jphysiol.1973.sp010410

F. Zhang, Circuit-breakers: optical technologies for probing neural signals and systems, Nature Reviews Neuroscience, vol.446, issue.8, pp.577-581, 2007.
DOI : 10.1016/S0721-9571(82)80045-8

J. Livet, Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system, Nature, vol.20, issue.7166, pp.56-62, 2007.
DOI : 10.1038/nature06293

G. Buzsaki, Large-scale recording of neuronal ensembles, Nature Neuroscience, vol.7, issue.Suppl., pp.446-451, 2004.
DOI : 10.1038/nn1228

E. Chorev, Electrophysiological recordings from behaving animals???going beyond spikes, Current Opinion in Neurobiology, vol.19, issue.5, pp.513-519, 2009.
DOI : 10.1016/j.conb.2009.08.005

L. J. Gentet, Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice, Neuron, vol.65, issue.3, pp.422-435, 2010.
DOI : 10.1016/j.neuron.2010.01.006

A. K. Lee, Head-anchored whole-cell recordings in freely moving rats, Nature Protocols, vol.85, issue.3, pp.385-392, 2009.
DOI : 10.1016/0165-0270(88)90114-8

, 21

C. D. Harvey, Intracellular dynamics of hippocampal place cells during virtual navigation, Nature, vol.287, issue.7266, pp.941-946, 2009.
DOI : 10.1007/BF00237147

D. A. Dombeck, Functional imaging of hippocampal place cells at cellular resolution during virtual navigation, Nature Neuroscience, vol.24, issue.11, pp.1433-1440, 2010.
DOI : 10.1073/pnas.1232232100

URL : http://europepmc.org/articles/pmc2967725?pdf=render

H. Jia, In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons, Nature Protocols, vol.4, issue.1, pp.28-35, 2011.
DOI : 10.1523/JNEUROSCI.0623-08.2008

E. I. Moser and M. B. Moser, A metric for space, Hippocampus, vol.14, issue.12, pp.1142-1156, 2008.
DOI : 10.1515/REVNEURO.2006.17.1-2.71

M. E. Newman, Spread of epidemic disease on networks, Physical Review E, vol.38, issue.1, p.16128, 2002.
DOI : 10.1016/0277-9536(94)90302-6

URL : http://link.aps.org/pdf/10.1103/PhysRevE.66.016128

M. Salathe, A high-resolution human contact network for infectious disease transmission, Proceedings of the National Academy of Sciences, vol.74, issue.1 Pt 2, pp.22020-22025, 2010.
DOI : 10.1103/PhysRevE.74.016110

URL : http://www.pnas.org/content/107/51/22020.full.pdf

J. A. Dunne, Food-web structure and network theory: The role of connectance and size, Proceedings of the National Academy of Sciences, vol.411, issue.6833, pp.12917-12922, 2002.
DOI : 10.1038/35075138

URL : http://www.pnas.org/content/99/20/12917.full.pdf

D. B. Stouffer, A robust measure of food web intervality, Proceedings of the National Academy of Sciences, vol.305, issue.5594, 2006.
DOI : 10.1126/science.298.5594.824

URL : http://www.pnas.org/content/103/50/19015.full.pdf

S. Feldt, Functional clustering algorithm for the analysis of dynamic network data, Physical Review E, vol.19, issue.5, p.56104, 2009.
DOI : 10.1038/nn2037

, structure in networks, p.66133

M. E. 31-newman, Finding community structure in networks using the eigenvectors of matrices, Physical Review E, vol.49, issue.3, p.36104, 2006.
DOI : 10.1103/PhysRevE.72.046105

M. Rosvall and C. T. Bergstrom, Maps of random walks on complex networks reveal community structure, Proceedings of the National Academy of Sciences, vol.101, issue.suppl_1, pp.1118-1123, 2008.
DOI : 10.1073/pnas.0307852100

S. Boccaletti, Complex networks: Structure and dynamics, Physics Reports, vol.424, issue.4-5, pp.175-308, 2006.
DOI : 10.1016/j.physrep.2005.10.009

R. Albert, Error and attack tolerance of complex networks, Nature, vol.1696, issue.6794, pp.378-382, 2000.
DOI : 10.1007/3-540-48155-9_27

J. Chu-shore, Power law versus exponential state transition dynamics: application to sleep?wake architecture Power-law distributions in empirical data. SIAM Rev, PLoS ONE, vol.5, issue.51, pp.661-703, 2009.

D. J. Watts and S. H. Strogatz, Collective dynamics of ???small-world??? networks, Nature, vol.338, issue.2, pp.440-442, 1998.
DOI : 10.1038/338334a0

M. Rubinov and O. Sporns, Complex network measures of brain connectivity: Uses and interpretations, NeuroImage, vol.52, issue.3, p.1059, 2010.
DOI : 10.1016/j.neuroimage.2009.10.003

O. Sporns and R. Kotter, Motifs in Brain Networks, PLoS Biology, vol.274, issue.11, p.369, 2004.
DOI : 10.1371/journal.pbio.0020369.t003

S. Achard, A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs, Journal of Neuroscience, vol.26, issue.1, pp.63-72, 2006.
DOI : 10.1523/JNEUROSCI.3874-05.2006

C. J. Honey, Can structure predict function in the human brain?, NeuroImage, vol.52, issue.3, pp.766-776, 2010.
DOI : 10.1016/j.neuroimage.2010.01.071

S. C. Ponten, Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures, Clinical Neurophysiology, vol.118, issue.4, pp.918-927, 2007.
DOI : 10.1016/j.clinph.2006.12.002

S. Yu, A Small World of Neuronal Synchrony, Cerebral Cortex, vol.393, issue.6684, pp.2891-2901, 2008.
DOI : 10.1038/30918

URL : https://academic.oup.com/cercor/article-pdf/18/12/2891/17299589/bhn047.pdf

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Reviews Neuroscience, vol.8, issue.3, pp.186-198, 2009.
DOI : 10.1371/journal.pone.0002051

T. Klausberger, Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo, Nature, vol.542, issue.6925, pp.844-848, 2003.
DOI : 10.1113/jphysiol.2002.020024

A. M. Aertsen, Dynamics of neuronal firing correlation: modulation of "effective connectivity", Journal of Neurophysiology, vol.61, issue.5, pp.900-917, 1989.
DOI : 10.1152/jn.1989.61.5.900

K. A. Friston, Causal modelling and brain connectivity in functional magnetic resonance imaging Synchronization in complex networks, PLoS Biol. Phys. Rep, vol.7, issue.469, pp.93-153, 2008.
DOI : 10.1371/journal.pbio.1000033

URL : https://doi.org/10.1371/journal.pbio.1000033

M. Barahona and L. M. Pecora, Synchronization in Small-World Systems, Physical Review Letters, vol.1, issue.5, p.54101, 2002.
DOI : 10.1137/0401033

URL : http://arxiv.org/pdf/nlin/0112023

S. 50-feldt, Memory formation: from network structure to neural dynamics, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.37, issue.5172, p.2251, 2010.
DOI : 10.1126/science.8036517

R. J. Morgan and I. Soltesz, Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures, Proceedings of the National Academy of Sciences, vol.9, issue.6, pp.6179-6184, 2008.
DOI : 10.1162/neco.1997.9.6.1179

X. F. Wang and G. R. Chen, SYNCHRONIZATION IN SMALL-WORLD DYNAMICAL NETWORKS, International Journal of Bifurcation and Chaos, vol.42, issue.01, pp.187-192, 2002.
DOI : 10.1038/30918

A. Kumar, Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding, Nature Reviews Neuroscience, vol.33, issue.46, pp.615-627, 2010.
DOI : 10.1016/S0165-0270(99)00127-2

E. Fuchs, Coemergence of regularity and complexity during neural network development, Developmental Neurobiology, vol.4, issue.13, pp.1802-1814, 2007.
DOI : 10.1002/dneu.20557

URL : http://onlinelibrary.wiley.com/doi/10.1002/dneu.20557/pdf

E. Fuchs, The formation of synchronization cliques during the development of modular neural networks, Physical Biology, vol.6, issue.3, p.36018, 2009.
DOI : 10.1088/1478-3975/6/3/036018

B. Percha, Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy, Physical Review E, vol.81, issue.3, p.31909, 2005.
DOI : 10.1162/0899766041732422

URL : http://arxiv.org/pdf/physics/0411126

A. Roxin, Self-Sustained Activity in a Small-World Network of Excitable Neurons, Physical Review Letters, vol.10, issue.19, 2004.
DOI : 10.1016/S0167-2789(02)00490-6

A. J. Watt, Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity, Nature Neuroscience, vol.21, issue.4, pp.463-473, 2009.
DOI : 10.1113/jphysiol.1992.sp019382

URL : http://discovery.ucl.ac.uk/150241/1/Hausser_1378129_Traveling_waves_in_developing_cerebellar_cortex_ukmss-4248.pdf

L. A. Amaral, Classes of small-world networks, Proceedings of the National Academy of Sciences, vol.48, issue.5411, pp.11149-11152, 2000.
DOI : 10.1126/science.284.5411.96

A. L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, vol.286, pp.509-512, 1999.

G. Buzsaki, Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons, Trends in Neurosciences, vol.27, issue.4, pp.186-193, 2004.
DOI : 10.1016/j.tins.2004.02.007

G. Grinstein and R. Linsker, Synchronous neural activity in scale-free network models versus random network models, Proceedings of the National Academy of Sciences, vol.71, issue.1, pp.9948-9953, 2005.
DOI : 10.1103/PhysRevE.71.016116

URL : http://www.pnas.org/content/102/28/9948.full.pdf

E. V. Lubenov and A. G. Siapas, Hippocampal theta oscillations are travelling waves, Nature, vol.378, issue.7246, pp.534-539, 2009.
DOI : 10.1007/BF00227176

URL : https://authors.library.caltech.edu/14755/1/Lubenov2009p4508Nature.pdf

B. L. Chen, Wiring optimization can relate neuronal structure and function, Proceedings of the National Academy of Sciences, vol.385, issue.6614, pp.4723-4728, 2006.
DOI : 10.1038/385313a0

URL : http://www.pnas.org/content/103/12/4723.full.pdf

A. L. Barabasi and Z. N. Oltvai, Network biology: understanding the cell's functional organization, Nature Reviews Genetics, vol.184, issue.2, pp.101-113, 2004.
DOI : 10.1128/JB.184.1.152-164.2002

D. S. Bassett, Efficient physical embedding of topologically complex information processing networks in brains and computer circuits A modeler's view on the spatial structure of intrinsic horizontal connectivity in the neocortex, PLoS Comput. Biol. Prog. Neurobiol, vol.6, issue.92, pp.277-292, 2010.

G. Sumbre, Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval, Nature, vol.210, issue.7218, pp.102-106, 2008.
DOI : 10.1016/0165-0173(83)90036-X

E. Z. Macosko, A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans, Nature, vol.11, issue.7242, pp.1171-1175, 2009.
DOI : 10.1101/SQB.1990.055.01.051

Y. Shang, Excitatory Local Circuits and Their Implications for Olfactory Processing in the Fly Antennal Lobe, Cell, vol.128, issue.3, pp.601-612, 2007.
DOI : 10.1016/j.cell.2006.12.034

G. Laurent, Olfactory network dynamics and the coding of multidimensional signals, Nature Reviews Neuroscience, vol.278, issue.11, pp.884-895, 2002.
DOI : 10.1126/science.278.5337.463

R. A. Jortner, A Simple Connectivity Scheme for Sparse Coding in an Olfactory System, Journal of Neuroscience, vol.27, issue.7, pp.1659-1669, 2007.
DOI : 10.1523/JNEUROSCI.4171-06.2007

M. Sur and J. L. Rubenstein, Patterning and Plasticity of the Cerebral Cortex, Science, vol.310, issue.5749, pp.805-810, 2005.
DOI : 10.1126/science.1112070

Y. C. Yu, Specific synapses develop preferentially among sister excitatory neurons in the neocortex, Nature, vol.7, issue.7237, pp.501-504, 2009.
DOI : 10.1101/SQB.1990.055.01.029

R. Batista-brito and G. Fishell, Chapter 3 The Developmental Integration of Cortical Interneurons into a Functional Network, Curr. Top. Dev. Biol, vol.87, pp.81-118, 2009.
DOI : 10.1016/S0070-2153(09)01203-4

S. J. Butt, The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype, Neuron, vol.48, issue.4, pp.591-604, 2005.
DOI : 10.1016/j.neuron.2005.09.034

C. Allene and R. Cossart, Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations?, The Journal of Physiology, vol.5, issue.Suppl 2, pp.83-91, 2009.
DOI : 10.1038/nn0602-850

URL : https://hal.archives-ouvertes.fr/hal-01848197

Y. Ari, Developing networks play a similar melody, Trends Neurosci, vol.24, pp.353-360, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00484881

A. G. Blankenship and M. B. Feller, Mechanisms underlying spontaneous patterned activity in developing neural circuits, Nature Reviews Neuroscience, vol.296, issue.1, pp.18-29, 2010.
DOI : 10.1111/j.1528-1167.2006.00839.x

W. J. Moody and M. M. Bosma, Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells, Physiological Reviews, vol.85, issue.3, pp.883-941, 2005.
DOI : 10.1111/j.1469-7793.2000.00571.x

N. C. Spitzer, Electrical activity in early neuronal development, Nature, vol.8, issue.7120, pp.707-712, 2006.
DOI : 10.1073/pnas.0607450104

C. Allene, Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex, Journal of Neuroscience, vol.28, issue.48, pp.12851-12863, 2008.
DOI : 10.1523/JNEUROSCI.3733-08.2008

URL : https://hal.archives-ouvertes.fr/inserm-00483521

O. Garaschuk, Large-scale oscillatory calcium waves in the immature cortex, Nature Neuroscience, vol.13, issue.5, pp.452-459, 2000.
DOI : 10.1016/0166-2236(90)90137-Y

A. K. Mccabe, Roles of glutamate and GABA receptors in setting the developmental timing of spontaneous synchronized activity in the developing mouse cortex, Developmental Neurobiology, vol.510, issue.12, p.1574, 2007.
DOI : 10.1113/jphysiol.1996.sp021748

N. L. Rochefort, Sparsification of neuronal activity in the visual cortex at eye-opening, Proceedings of the National Academy of Sciences, vol.1, issue.1, pp.15049-15054, 2009.
DOI : 10.1038/nmeth706

H. Adelsberger, Cortical calcium waves in resting newborn mice, Nature Neuroscience, vol.37, issue.8, pp.988-990, 2005.
DOI : 10.1016/S0896-6273(03)00065-5

R. Khazipov, Early motor activity drives spindle bursts in the developing somatosensory cortex, Nature, vol.15, issue.Suppl., pp.758-761, 2004.
DOI : 10.1523/JNEUROSCI.15-01-00047.1995

URL : https://hal.archives-ouvertes.fr/inserm-00484640

X. Leinekugel, Correlated Bursts of Activity in the Neonatal Hippocampus in Vivo, Science, vol.296, issue.5575, pp.2049-2052, 2002.
DOI : 10.1126/science.1071111

J. W. Yang, Three Patterns of Oscillatory Activity Differentially Synchronize Developing Neocortical Networks In Vivo, Journal of Neuroscience, vol.29, issue.28, pp.9011-9025, 2009.
DOI : 10.1523/JNEUROSCI.5646-08.2009

L. M. Bettencourt, Physical Review E, vol.23, issue.2, p.21915, 2007.
DOI : 10.1038/nature04701

D. Eytan and S. Marom, Dynamics and Effective Topology Underlying Synchronization in Networks of Cortical Neurons, Journal of Neuroscience, vol.26, issue.33, pp.8465-8476, 2006.
DOI : 10.1523/JNEUROSCI.1627-06.2006

K. V. Srinivas, Small-world network topology of hippocampal neuronal network is lost, in an in vitro glutamate injury model of epilepsy, European Journal of Neuroscience, vol.4, issue.Suppl. 5, pp.3276-3286, 2007.
DOI : 10.1161/01.STR.26.2.298

G. A. Kerchner and R. A. Nicoll, Silent synapses and the emergence of a postsynaptic mechanism for LTP, Nature Reviews Neuroscience, vol.305, issue.11, pp.813-825, 2008.
DOI : 10.1113/jphysiol.1990.sp018289

V. Crepel, A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus, Neuron, vol.54, issue.1, pp.105-120, 2007.
DOI : 10.1016/j.neuron.2007.03.007

URL : https://hal.archives-ouvertes.fr/inserm-00483533

E. Dupont, Rapid developmental switch in the mechanisms driving early cortical columnar networks, Nature, vol.171, issue.7072, pp.79-83, 2006.
DOI : 10.1002/cne.901710408

Y. Ben-ari, GABA: A Pioneer Transmitter That Excites Immature Neurons and Generates Primitive Oscillations, Physiological Reviews, vol.87, issue.4, pp.1215-1284, 2007.
DOI : 10.1016/0014-4886(68)90126-X

URL : https://hal.archives-ouvertes.fr/inserm-00483857

D. D. Wang and A. R. Kriegstein, GABA Regulates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation, Journal of Neuroscience, vol.28, issue.21, pp.5547-5558, 2008.
DOI : 10.1523/JNEUROSCI.5599-07.2008

A. G. Blankenship, Synaptic and Extrasynaptic Factors Governing Glutamatergic Retinal Waves, Neuron, vol.62, issue.2, pp.230-241, 2009.
DOI : 10.1016/j.neuron.2009.03.015

M. Segerstrale, High Firing Rate of Neonatal Hippocampal Interneurons Is Caused by Attenuation of Afterhyperpolarizing Potassium Currents by Tonically Active Kainate Receptors, Journal of Neuroscience, vol.30, issue.19, pp.6507-6514, 2010.
DOI : 10.1523/JNEUROSCI.4856-09.2010

P. Hagmann, White matter maturation reshapes structural connectivity in the late developing human brain, Proceedings of the National Academy of Sciences, vol.8, issue.7-8, pp.19067-19072, 2010.
DOI : 10.1002/nbm.1940080707

K. Supekar, Development of functional and structural connectivity within the default mode network in young children, NeuroImage, vol.52, issue.1, pp.290-301, 2010.
DOI : 10.1016/j.neuroimage.2010.04.009

S. 102-rheims, Excitatory GABA in Rodent Developing Neocortex In Vitro, Journal of Neurophysiology, vol.100, issue.2, pp.609-619, 2008.
DOI : 10.1152/jn.00855.2003

P. O. Kanold and H. J. Luhmann, The Subplate and Early Cortical Circuits, Annual Review of Neuroscience, vol.33, issue.1, pp.23-48, 2010.
DOI : 10.1146/annurev-neuro-060909-153244

N. Tamamaki and R. Tomioka, Long-Range GABAergic Connections Distributed throughout the Neocortex and their Possible Function, Frontiers in Neuroscience, vol.4, p.202, 2010.
DOI : 10.3389/fnins.2010.00202

T. Voigt, Synchronous Oscillatory Activity in Immature Cortical Network Is Driven by GABAergic Preplate Neurons, The Journal of Neuroscience, vol.21, issue.22, pp.8895-8905, 2001.
DOI : 10.1523/JNEUROSCI.21-22-08895.2001

URL : http://www.jneurosci.org/content/21/22/8895.full.pdf

H. Super, Involvement of Distinct Pioneer Neurons in the Formation of Layer-Specific Connections in the Hippocampus, The Journal of Neuroscience, vol.18, issue.12, pp.4616-4626, 1998.
DOI : 10.1523/JNEUROSCI.18-12-04616.1998

M. Case and I. Soltesz, Discreet Charm of the GABAergic Bourgeoisie: Superconnected Cells Conduct Developmental Symphonies, Neuron, vol.64, issue.6, pp.780-782, 2009.
DOI : 10.1016/j.neuron.2009.12.013

URL : https://doi.org/10.1016/j.neuron.2009.12.013

K. K. Thind, Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy, Journal of Comparative Neurology, vol.56, issue.5, pp.647-667, 2010.
DOI : 10.1097/00005072-199709000-00004

W. Zhang, Surviving Hilar Somatostatin Interneurons Enlarge, Sprout Axons, and Form New Synapses with Granule Cells in a Mouse Model of Temporal Lobe Epilepsy, Journal of Neuroscience, vol.29, issue.45, pp.14247-14256, 2009.
DOI : 10.1523/JNEUROSCI.3842-09.2009

M. Kaiser, A Simple Rule for Axon Outgrowth and Synaptic Competition Generates Realistic Connection Lengths and Filling Fractions, Cerebral Cortex, vol.68, issue.60, pp.3001-3010, 2009.
DOI : 10.1016/S0301-0082(02)00129-6

URL : https://academic.oup.com/cercor/article-pdf/19/12/3001/17301731/bhp071.pdf

C. J. Stam, Emergence of modular structure in a large-scale brain network with interactions between dynamics and connectivity, Frontiers in Computational Neuroscience, vol.4, 2010.
DOI : 10.3389/fncom.2010.00133

G. Miyoshi and G. Fishell, Directing neuron-specific transgene expression in the mouse CNS, Current Opinion in Neurobiology, vol.16, issue.5, pp.577-584, 2006.
DOI : 10.1016/j.conb.2006.08.013

M. Salathe, The evolution of network topology by selective removal, Journal of The Royal Society Interface, vol.4, issue.5, pp.533-536, 2005.
DOI : 10.1098/rsif.2005.0072

L. Wittner and R. Miles, Factors defining a pacemaker region for synchrony in the hippocampus, The Journal of Physiology, vol.24, issue.3, pp.867-883, 2007.
DOI : 10.1523/JNEUROSCI.0765-04.2004

R. L. Buckner, Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease, Journal of Neuroscience, vol.29, issue.6, pp.1860-1873, 2009.
DOI : 10.1523/JNEUROSCI.5062-08.2009

URL : http://www.jneurosci.org/content/jneuro/29/6/1860.full.pdf