C. Akerman and H. Cline, Depolarizing GABAergic Conductances Regulate the Balance of Excitation to Inhibition in the Developing Retinotectal Circuit In Vivo, Journal of Neuroscience, vol.26, issue.19, pp.5117-5130, 2006.
DOI : 10.1523/JNEUROSCI.0319-06.2006

C. Allène, A. Cattani, J. Ackman, P. Bonifazi, L. Aniksztejn et al., Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex, Journal of Neuroscience, vol.28, issue.48, pp.12851-12863, 2008.
DOI : 10.1523/JNEUROSCI.3733-08.2008

D. Appleton, D. Vivo, and D. , An experimental animal model for the effect of ketogenic diet on epilepsy, Proc Aust Assoc Neurol, vol.10, pp.75-80, 1973.

D. Appleton and D. Devivo, An Animal Model for the Ketogenic Diet., Epilepsia, vol.21, issue.2, pp.211-227, 1974.
DOI : 10.1042/bj0820090

J. Aram and D. Lodge, Epileptiform activity induced by alkalosis in rat neocortical slices: Block by antagonists of, Neuroscience Letters, vol.83, issue.3, pp.345-350, 1987.
DOI : 10.1016/0304-3940(87)90112-1

V. Balakrishnan, M. Becker, S. Löhrke, H. Nothwang, E. Güresir et al., Expression and Function of Chloride Transporters during Development of Inhibitory Neurotransmission in the Auditory Brainstem, The Journal of Neuroscience, vol.23, issue.10, pp.4134-4145, 2003.
DOI : 10.1523/JNEUROSCI.23-10-04134.2003

M. Balestrino and G. Somjen, Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat., The Journal of Physiology, vol.396, issue.1, pp.247-266, 1988.
DOI : 10.1113/jphysiol.1988.sp016961

T. Banke and C. Mcbain, GABAergic Input onto CA3 Hippocampal Interneurons Remains Shunting throughout Development, Journal of Neuroscience, vol.26, issue.45, pp.11720-11725, 2006.
DOI : 10.1523/JNEUROSCI.2887-06.2006

URL : http://www.jneurosci.org/content/jneuro/26/45/11720.full.pdf

P. Barry and J. Lynch, Liquid junction potentials and small cell effects in patch-clamp analysis, The Journal of Membrane Biology, vol.407, issue.2, pp.101-117, 1991.
DOI : 10.1007/978-1-4615-7858-1_1

M. Belenky, P. Sollars, D. Mount, S. Alper, Y. Yarom et al., Cell-type specific distribution of chloride transporters in the rat suprachiasmatic nucleus, Neuroscience, vol.165, issue.4, pp.1519-1537, 2010.
DOI : 10.1016/j.neuroscience.2009.11.040

Y. Ben-ari, Developing networks play a similar melody, Trends in Neurosciences, vol.24, issue.6, pp.354-360, 2001.
DOI : 10.1016/S0166-2236(00)01813-0

URL : https://hal.archives-ouvertes.fr/inserm-00484881

Y. Ben-ari, Excitatory actions of gaba during development: the nature of the nurture, Nature Reviews Neuroscience, vol.3, issue.9, pp.728-739, 2002.
DOI : 10.1007/BF02577688

URL : https://hal.archives-ouvertes.fr/inserm-00484852

Y. Ben-ari, E. Cherubini, R. Corradetti, and J. Gaiarsa, Giant synaptic potentials in immature rat CA3 hippocampal neurones., The Journal of Physiology, vol.416, issue.1, pp.303-325, 1989.
DOI : 10.1113/jphysiol.1989.sp017762

Y. Ben-ari, J. Gaiarsa, R. Tyzio, and R. Khazipov, GABA: A Pioneer Transmitter That Excites Immature Neurons and Generates Primitive Oscillations, Physiological Reviews, vol.87, issue.4, pp.1215-1284, 2007.
DOI : 10.1016/0014-4886(68)90126-X

URL : https://hal.archives-ouvertes.fr/inserm-00483857

L. Bergersen, A. Rafiki, and O. Ottersen, Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system, Neurochemical Research, vol.27, issue.1/2, pp.89-96, 2002.
DOI : 10.1023/A:1014806723147

A. Bilger and A. Nehlig, Quantitative histochemical changes in enzymes involved in energy metabolism in the rat brain during postnatal Development. I. Cytochrome oxidase and lactate dehydrogenase, International Journal of Developmental Neuroscience, vol.9, issue.6, pp.545-553, 1991.
DOI : 10.1016/0736-5748(91)90015-E

P. Bjerring, J. Hauerberg, H. Frederiksen, L. Jorgensen, B. Hansen et al., Cerebral Glutamine Concentration and Lactate???Pyruvate Ratio in Patients with Acute Liver Failure, Neurocritical Care, vol.22, issue.3???4, pp.3-7, 2008.
DOI : 10.1016/j.neuint.2005.11.017

P. Blaesse, I. Guillemin, J. Schindler, M. Schweizer, E. Delpire et al., Oligomerization of KCC2 Correlates with Development of Inhibitory Neurotransmission, Journal of Neuroscience, vol.26, issue.41, pp.10407-10419, 2006.
DOI : 10.1523/JNEUROSCI.3257-06.2006

P. Blaesse, M. Airaksinen, C. Rivera, and K. K. , Cation-Chloride Cotransporters and Neuronal Function, Neuron, vol.61, issue.6, pp.820-838, 2009.
DOI : 10.1016/j.neuron.2009.03.003

P. Bonifazi, M. Goldin, M. Picardo, I. Jorquera, A. Cattani et al., GABAergic Hub Neurons Orchestrate Synchrony in Developing Hippocampal Networks, Science, vol.324, issue.5927, pp.1419-1424, 2009.
DOI : 10.1126/science.1169957

URL : https://hal.archives-ouvertes.fr/inserm-00483216

U. Bonnet, T. Leniger, and M. Wiemann, Alteration of intracellular pH and activity of CA3-pyramidal cells in guinea pig hippocampal slices by inhibition of transmembrane acid extrusion, Brain Research, vol.872, issue.1-2, pp.116-124, 2000.
DOI : 10.1016/S0006-8993(00)02350-7

K. Bough and D. Eagles, A Ketogenic Diet Increases the Resistance to Pentylenetetrazole-Induced Seizures in the Rat, Epilepsia, vol.180, issue.2, pp.138-143, 1999.
DOI : 10.1001/archpedi.1964.02080060595008

K. Bough, S. Yao, and D. Eagles, Higher ketogenic diet ratios confer protection from seizures without neurotoxicity, Epilepsy Research, vol.38, issue.1, pp.15-25, 2000.
DOI : 10.1016/S0920-1211(99)00077-7

P. Boulenguez, S. Liabeuf, R. Bos, H. Bras, C. Jean-xavier et al., Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury, Nature Medicine, vol.26, issue.3, pp.302-307, 2010.
DOI : 10.1523/JNEUROSCI.3257-06.2006

D. Brody, S. Magnoni, K. Schwetye, M. Spinner, T. Esparza et al., Amyloid-?? Dynamics Correlate with Neurological Status in the Injured Human Brain, Science, vol.47, issue.3, pp.1221-1224, 2008.
DOI : 10.1097/00006123-200009000-00035

L. Burd, M. Jones, . Jr, M. Simmons, E. Makowski et al., Placental production and foetal utilisation of lactate and pyruvate, Nature, vol.17, issue.5502, pp.710-711, 1975.
DOI : 10.1016/0002-9378(64)90945-7

L. Cancedda, H. Fiumelli, K. Chen, and M. Poo, Excitatory GABA Action Is Essential for Morphological Maturation of Cortical Neurons In Vivo, Journal of Neuroscience, vol.27, issue.19, pp.5224-5235, 2007.
DOI : 10.1523/JNEUROSCI.5169-06.2007

E. Cherubini, Y. Ben-ari, and K. , Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus, Journal of Neurophysiology, vol.62, issue.4, pp.882-895, 1989.
DOI : 10.1152/jn.1989.62.4.882

M. Chesler, Regulation and Modulation of pH in the Brain, Physiological Reviews, vol.83, issue.4, pp.1183-1221, 2003.
DOI : 10.1016/0003-9861(88)90637-6

Y. Chou, Y. Tsai, C. Chen, S. Chen, and J. Lee, Determination of lipoprotein lipase activity in post heparin plasma of streptozotocin-induced diabetic rats by high-performance liquid chromatography with fluorescence detection, Biomedical Chromatography, vol.8, issue.5, pp.502-510, 2008.
DOI : 10.1152/ajpendo.00094.2001

I. Chudotvorova, A. Ivanov, S. Rama, C. Hübner, C. Pellegrino et al., Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses, The Journal of Physiology, vol.90, issue.3, pp.671-679, 2005.
DOI : 10.1152/jn.00172.2003

URL : https://hal.archives-ouvertes.fr/inserm-00484389

J. Clark, T. Bates, T. Cullingford, and J. Land, Development of Enzymes of Energy Metabolism in the Neonatal Mammalian Brain, Developmental Neuroscience, vol.15, issue.3-5, pp.174-180, 1993.
DOI : 10.1159/000111333

V. Crépel, D. Aronov, I. Jorquera, A. Represa, Y. Ben-ari et al., A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus, Neuron, vol.54, issue.1, pp.105-120, 2007.
DOI : 10.1016/j.neuron.2007.03.007

E. Delpire, Cation-Chloride Cotransporters in Neuronal Communication, Physiology, vol.15, issue.6, pp.309-312, 2000.
DOI : 10.1074/jbc.274.18.12656

D. Devivo, M. Leckie, and H. Agrawal, d-?-HYDROXYBUTYRATE: A MAJOR PRECURSOR OF AMINO ACIDS IN DEVELOPING RAT BRAIN, Journal of Neurochemistry, vol.32, issue.2, pp.161-170, 1975.
DOI : 10.1111/j.1471-4159.1972.tb01271.x

B. Doepner, S. Thierfelder, H. Hirche, and K. Benndorf, 3-hydroxybutyrate blocks the transient K+ outward current in myocardial mouse cells in a stereoselective fashion., The Journal of Physiology, vol.500, issue.1, pp.85-94956, 1997.
DOI : 10.1113/jphysiol.1997.sp022001

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.1997.sp022001/pdf

B. Doepner, R. Koopmann, A. Knopp, H. Hirche, and K. Benndorf, Dibenzylamine - a novel blocker of the voltage-dependent K + current in myocardial mouse cells, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.364, issue.1, pp.9-13, 2001.
DOI : 10.1007/s002100100406

S. Donevan, H. White, G. Anderson, and J. Rho, Voltage-Dependent Block of N-Methyl-d-Aspartate Receptors by the Novel Anticonvulsant Dibenzylamine, a Bioactive Constituent of l-(+)-??-Hydroxybutyrate, Epilepsia, vol.51, issue.suppl 6, pp.1274-1279, 2003.
DOI : 10.1080/152165401753311780

C. Dulla, P. Dobelis, T. Pearson, B. Frenguelli, K. Staley et al., , 2005.

, Adenosine and ATP link PCO2 to cortical excitability via pH, Neuron, vol.48, pp.1011-1023

C. Dulla, B. Frenguelli, K. Staley, and S. Masino, Intracellular Acidification Causes Adenosine Release During States of Hyperexcitability in the Hippocampus, Journal of Neurophysiology, vol.102, issue.3, pp.1984-1993, 2009.
DOI : 10.1002/ana.21313

V. Dzhala, L. Desfreres, Z. Melyan, Y. Ben-ari, and R. Khazipov, Epileptogenic action of caffeine during anoxia in the neonatal rat hippocampus, Annals of Neurology, vol.17, issue.10, pp.95-102, 1999.
DOI : 10.1016/0002-9378(83)90250-8

URL : https://hal.archives-ouvertes.fr/inserm-00486274

V. Dzhala, D. Talos, D. Sdrulla, A. Brumback, G. Mathews et al., NKCC1 transporter facilitates seizures in the developing brain, Nature Medicine, vol.291, issue.11, pp.1205-1213, 2005.
DOI : 10.1007/s004410051013

S. Eaton, I. Chatziandreou, S. Krywawych, S. Pen, P. Clayton et al., Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with hyperinsulinism: a novel glucose???fatty acid cycle?, Biochemical Society Transactions, vol.31, issue.6, pp.1137-1139, 2003.
DOI : 10.1042/bst0311137

M. Erecinska, S. Cherian, and I. Silver, Energy metabolism in mammalian brain during development, Progress in Neurobiology, vol.73, issue.6, pp.397-445, 2004.
DOI : 10.1016/j.pneurobio.2004.06.003

F. Fernandez, A. Verdu, J. Quero, M. Ferreiros, E. Daimiel et al., Cerebrospinal fluid lactate levels in term infants with perinatal hypoxia, Pediatric Neurology, vol.2, issue.1, pp.39-42, 1986.
DOI : 10.1016/0887-8994(86)90038-X

P. Ferré, P. Satabin, J. Decaux, F. Escriva, and J. Girard, Development and regulation of ketogenesis in hepatocytes isolated from newborn rats, Biochemical Journal, vol.214, issue.3, pp.937-942, 1983.
DOI : 10.1042/bj2140937

H. Fiumelli, L. Cancedda, and M. Poo, Modulation of GABAergic Transmission by Activity via Postsynaptic Ca2+-Dependent Regulation of KCC2 Function, Neuron, vol.48, issue.5, pp.773-786, 2005.
DOI : 10.1016/j.neuron.2005.10.025

K. Ganguly, A. Schinder, S. Wong, and M. Poo, GABA Itself Promotes the Developmental Switch of Neuronal GABAergic Responses from Excitation to Inhibition, Cell, vol.105, issue.4, pp.521-532, 2001.
DOI : 10.1016/S0092-8674(01)00341-5

O. Garaschuk, E. Hanse, and A. Konnerth, Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus, The Journal of Physiology, vol.257, issue.1, pp.219-236, 1998.
DOI : 10.1016/0896-6273(95)90236-8

D. Gilbert, C. Franjic-würtz, K. Funk, T. Gensch, S. Frings et al., Differential maturation of chloride homeostasis in primary afferent neurons of the somatosensory system, International Journal of Developmental Neuroscience, vol.25, issue.7, pp.479-489, 2007.
DOI : 10.1016/j.ijdevneu.2007.08.001

J. Glykys, V. Dzhala, K. Kuchibhotla, G. Feng, T. Kuner et al., Differences in Cortical versus Subcortical GABAergic Signaling: A Candidate Mechanism of Electroclinical Uncoupling of Neonatal Seizures, Neuron, vol.63, issue.5, pp.657-672, 2009.
DOI : 10.1016/j.neuron.2009.08.022

A. Gulácsi, C. Lee, A. Sík, T. Viitanen, K. Kaila et al., Receptor-Mediated Inhibition in Rat Substantia Nigra, The Journal of Neuroscience, vol.23, issue.23, pp.8237-8246, 2003.
DOI : 10.1523/JNEUROSCI.23-23-08237.2003

J. Harding and V. Charlton, Effect of lactate and beta-hydroxybutyrate infusions on brain metabolism in the fetal sheep, J Dev Physiol, vol.14, pp.139-146, 1990.

A. Hartman, M. Gasior, E. Vining, and M. Rogawski, The Neuropharmacology of the Ketogenic Diet, Pediatric Neurology, vol.36, issue.5, pp.281-292, 2007.
DOI : 10.1016/j.pediatrneurol.2007.02.008

G. Herzberg and M. Gad, Evidence that the cytosolic activity of 3-hydroxybutyrate dehydrogenase in chicken liver isL-3-hydroxyacid dehydrogenase, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.802, issue.1, pp.67-70, 1984.
DOI : 10.1016/0304-4165(84)90034-5

C. Holmgren, M. Mukhtarov, A. Malkov, I. Popova, P. Bregestovski et al., Journal of Neurochemistry, vol.10, issue.Suppl 5, pp.900-912, 2010.
DOI : 10.1038/jcbfm.1990.18

M. Howard, R. Burger, and E. Rubel, A Developmental Switch to GABAergic Inhibition Dependent on Increases in Kv1-Type K+ Currents, Journal of Neuroscience, vol.27, issue.8, pp.2112-2123, 2007.
DOI : 10.1523/JNEUROSCI.5266-06.2007

W. Jarolimek, U. Misgeld, and H. Lux, Activity dependent alkaline and acid transients in guinea pig hippocampal slices, Brain Research, vol.505, issue.2, pp.225-232, 1989.
DOI : 10.1016/0006-8993(89)91447-9

M. Jones, . Jr, L. Burd, E. Makowski, G. Meschia et al., Cerebral metabolism in sheep: a comparative study of the adult, the lamb, and the fetus, American Journal of Physiology-Legacy Content, vol.229, issue.1, pp.235-239, 1975.
DOI : 10.1152/ajplegacy.1975.229.1.235

K. Kahle, K. Staley, B. Nahed, G. Gamba, S. Hebert et al., Roles of the cation???chloride cotransporters in neurological disease, Nature Clinical Practice Neurology, vol.429, issue.9, pp.490-503, 2008.
DOI : 10.1093/jnen/63.8.856

K. Kaila, Ionic basis of GABAA receptor channel function in the nervous system, Progress in Neurobiology, vol.42, issue.4, pp.489-537, 1994.
DOI : 10.1016/0301-0082(94)90049-3

K. Kaila and J. Voipio, Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance, Nature, vol.330, issue.6144, pp.163-165, 1987.
DOI : 10.1038/330163a0

K. Kaila, J. Voipio, P. Paalasmaa, M. Pasternack, and R. Deisz, The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones., The Journal of Physiology, vol.464, issue.1, pp.273-289, 1993.
DOI : 10.1113/jphysiol.1993.sp019634

K. Kandler and E. Friauf, Development of glycinergic and glutamatergic synaptic transmission in the auditory brainstem of perinatal rats, The Journal of Neuroscience, vol.15, issue.10, pp.6890-6904, 1995.
DOI : 10.1523/JNEUROSCI.15-10-06890.1995

K. Kandler, P. Kullmann, F. Ene, and G. Kim, Excitatory action of an immature glycinergic/GABAergic sound localization pathway, Physiology & Behavior, vol.77, issue.4-5, pp.583-587, 2002.
DOI : 10.1016/S0031-9384(02)00905-8

I. Khalilov, M. Esclapez, I. Medina, D. Aggoun, K. Lamsa et al., A Novel In Vitro Preparation: the Intact Hippocampal Formation, Neuron, vol.19, issue.4, pp.743-749, 1997.
DOI : 10.1016/S0896-6273(00)80956-3

URL : https://hal.archives-ouvertes.fr/inserm-00522462

I. Khalilov, G. Holmes, and Y. Ben-ari, In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures, Nature Neuroscience, vol.99, issue.10, pp.1079-1085, 2003.
DOI : 10.1073/pnas.222550499

URL : https://hal.archives-ouvertes.fr/inserm-00484787

Y. Kim and L. Trussell, Negative Shift in the Glycine Reversal Potential Mediated by a Ca2+- and pH-Dependent Mechanism in Interneurons, Journal of Neuroscience, vol.29, issue.37, pp.11495-11510, 2009.
DOI : 10.1523/JNEUROSCI.1086-09.2009

J. Lamanna, N. Salem, M. Puchowicz, B. Erokwu, S. Koppaka et al., Ketones Suppress Brain Glucose Consumption, Adv Exp Med Biol, vol.645, pp.301-306, 2009.
DOI : 10.1007/978-0-387-85998-9_45

H. Lee, C. Chen, Y. Liu, E. Aizenman, and K. Kandler, KCC2 expression in immature rat cortical neurons is sufficient to switch the polarity of GABA responses, European Journal of Neuroscience, vol.93, issue.9, pp.2593-2599, 2005.
DOI : 10.1113/jphysiol.1987.sp016493

X. Leinekugel, I. Medina, I. Khalilov, Y. Ben-ari, and R. Khazipov, Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus, Neuron, vol.18, issue.2, pp.243-255, 1997.
DOI : 10.1016/S0896-6273(00)80265-2

URL : https://hal.archives-ouvertes.fr/inserm-00522468

S. Leong and J. Clark, Regional enzyme development in rat brain. Enzymes of energy metabolism, Biochemical Journal, vol.218, issue.1, pp.139-145, 1984.
DOI : 10.1042/bj2180139

URL : http://www.biochemj.org/content/ppbiochemj/218/1/139.full.pdf

H. Li, J. Tornberg, K. Kaila, M. Airaksinen, and C. Rivera, Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development, European Journal of Neuroscience, vol.444, issue.12, pp.2358-2370, 2002.
DOI : 10.1113/jphysiol.1991.sp018864

Z. Liu, R. Neff, and D. Berg, Sequential Interplay of Nicotinic and GABAergic Signaling Guides Neuronal Development, Science, vol.314, issue.5805, pp.1610-1613, 2006.
DOI : 10.1126/science.1134246

S. Löhrke, G. Srinivasan, M. Oberhofer, E. Doncheva, and E. Friauf, Shift from depolarizing to hyperpolarizing glycine action occurs at different perinatal ages in superior olivary complex nuclei, European Journal of Neuroscience, vol.12, issue.11, pp.2708-2722, 2005.
DOI : 10.1007/978-1-4612-2838-7_4

W. Lust, S. Pundik, J. Zechel, Y. Zhou, M. Buczek et al., Changing metabolic and energy profiles in fetal, neonatal, and adult rat brain, Metabolic Brain Disease, vol.18, issue.3, pp.195-206, 2003.
DOI : 10.1023/A:1025503115837

M. Maalouf, J. Rho, and M. Mattson, The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies, Brain Research Reviews, vol.59, issue.2, pp.293-315, 2009.
DOI : 10.1016/j.brainresrev.2008.09.002

P. Magistretti, L. Pellerin, D. Rothman, and R. Shulman, NEUROSCIENCE:Energy on Demand, Science, vol.283, issue.5401, pp.496-497, 1999.
DOI : 10.1126/science.283.5401.496

J. Medina, The Role of Lactate as an Energy Substrate for the Brain during the Early Neonatal Period, Neonatology, vol.48, issue.4, pp.237-244, 1985.
DOI : 10.1159/000242176

M. Mintun, A. Vlassenko, M. Rundle, and M. Raichle, Increased lactate/pyruvate ratio augments blood flow in physiologically activated human brain, Proceedings of the National Academy of Sciences, vol.45, issue.8, pp.659-664, 2004.
DOI : 10.1001/archpsyc.1989.01810060013003

URL : http://www.pnas.org/content/101/2/659.full.pdf

T. Moore, A. Lione, M. Sugden, and R. Dm, Beta-hydroxybutyrate transport in rat brain: developmental and dietary modulations, American Journal of Physiology-Legacy Content, vol.230, issue.3, pp.619-630, 1976.
DOI : 10.1152/ajplegacy.1976.230.3.619

URL : https://www.physiology.org/pb-assets/PDFs/2017-Legacy.pdf

A. Nehlig, Brain uptake and metabolism of ketone bodies in animal models, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.70, issue.3, pp.265-275, 2004.
DOI : 10.1016/j.plefa.2003.07.006

A. Nehlig and A. Pereira-de-vasconcelos, Glucose and ketone body utilization by the brain of neonatal rats, Progress in Neurobiology, vol.40, issue.2, pp.163-221, 1993.
DOI : 10.1016/0301-0082(93)90022-K

E. Novotny, . Jr, C. Ariyan, G. Mason, O. Reilly et al., Differential increase in cerebral cortical glucose oxidative metabolism during rat postnatal development is greater in vivo than in vitro, Brain Research, vol.888, issue.2, pp.193-202, 2001.
DOI : 10.1016/S0006-8993(00)03051-1

O. Owen, A. Morgan, H. Kemp, J. Sullivan, M. Herrera et al., Brain Metabolism during Fasting*, Journal of Clinical Investigation, vol.46, issue.10, pp.1589-1595, 1967.
DOI : 10.1172/JCI105650

URL : http://www.jci.org/articles/view/105650/files/pdf

D. Owens and A. Kriegstein, Is there more to gaba than synaptic inhibition?, Nature Reviews Neuroscience, vol.8, issue.9, pp.715-727, 2002.
DOI : 10.1002/(SICI)1096-9861(19970421)380:4<495::AID-CNE6>3.0.CO;2-X

D. Owens, L. Boyce, M. Davis, and A. Kriegstein, Excitatory GABA Responses in Embryonic and Neonatal Cortical Slices Demonstrated by Gramicidin Perforated-Patch Recordings and Calcium Imaging, The Journal of Neuroscience, vol.16, issue.20, pp.6414-6423, 1996.
DOI : 10.1523/JNEUROSCI.16-20-06414.1996

URL : http://www.jneurosci.org/content/16/20/6414.full.pdf

M. Page, H. Krebs, and D. Williamson, Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats, Biochemical Journal, vol.121, issue.1, pp.49-53, 1971.
DOI : 10.1042/bj1210049

J. Payne, C. Rivera, J. Voipio, and K. K. , Cation???chloride co-transporters in neuronal communication, development and trauma, Trends in Neurosciences, vol.26, issue.4, pp.199-206, 2003.
DOI : 10.1016/S0166-2236(03)00068-7

J. Pégorier, P. Ferré, and J. Girard, The effects of inhibition of fatty acid oxidation in suckling newborn rats, Biochemical Journal, vol.166, issue.3, pp.631-634, 1977.
DOI : 10.1042/bj1660631

L. Pellerin, G. Pellegri, J. Martin, and P. Magistretti, Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain, Proceedings of the National Academy of Sciences, vol.16, issue.6, pp.3990-3995, 1998.
DOI : 10.1097/00004647-199611000-00001

K. Pierre, P. Magistretti, and L. Pellerin, MCT2 is a Major Neuronal Monocarboxylate Transporter in the Adult Mouse Brain, Journal of Cerebral Blood Flow & Metabolism, vol.274, issue.5, pp.586-595, 2002.
DOI : 10.1006/bbrc.1997.6588

E. Pozas, S. Paco, E. Soriano, and F. Aguado, Cajal???Retzius cells fail to trigger the developmental expression of the Cl ??? extruding co-transporter KCC2, Brain Research, vol.1239, pp.85-91, 2008.
DOI : 10.1016/j.brainres.2008.08.058

T. Price, F. Cervero, and Y. De-koninck, Role of Cation-Chloride-Cotransporters (CCC) in Pain and Hyperalgesia, Current Topics in Medicinal Chemistry, vol.5, issue.6, pp.547-555, 2005.
DOI : 10.2174/1568026054367629

A. Rafiki, J. Boulland, A. Halestrap, O. Ottersen, and L. Bergersen, Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain, Neuroscience, vol.122, issue.3, pp.677-688, 2003.
DOI : 10.1016/j.neuroscience.2003.08.040

A. Rex, B. Bert, H. Fink, and J. Voigt, Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis, Physiology & Behavior, vol.98, issue.4, pp.467-473, 2009.
DOI : 10.1016/j.physbeh.2009.07.015

A. Reynolds, E. Brustein, M. Liao, A. Mercado, E. Babilonia et al., Neurogenic Role of the Depolarizing Chloride Gradient Revealed by Global Overexpression of KCC2 from the Onset of Development, Journal of Neuroscience, vol.28, issue.7, pp.1588-1597, 2008.
DOI : 10.1523/JNEUROSCI.3791-07.2008

S. Rheims, M. Minlebaev, A. Ivanov, A. Represa, R. Khazipov et al., Excitatory GABA in Rodent Developing Neocortex In Vitro, Journal of Neurophysiology, vol.100, issue.2, pp.609-619, 2008.
DOI : 10.1152/jn.00855.2003

URL : https://hal.archives-ouvertes.fr/inserm-00483487

S. Rheims, C. Holmgren, G. Chazal, J. Mulder, T. Harkany et al., GABA action in immature neocortical neurons directly depends on the availability of ketone bodies, Journal of Neurochemistry, vol.499, issue.S5, pp.1330-1338, 2009.
DOI : 10.1002/cne.21100

J. Rho, G. Anderson, S. Donevan, and H. White, Acetoacetate, Acetone, and Dibenzylamine (a Contaminant in l-(+)-??-Hydroxybutyrate) Exhibit Direct Anticonvulsant Actions in Vivo, Epilepsia, vol.252, issue.4, pp.358-361, 2002.
DOI : 10.1016/0304-4165(84)90034-5

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1528-1157.2002.47901.x/pdf

R. Riekki, I. Pavlov, J. Tornberg, S. Lauri, M. Airaksinen et al., Receptor-Mediated Inhibition in CA1 Pyramidal Neurons, Journal of Neurophysiology, vol.99, issue.6, pp.3075-3089, 2008.
DOI : 10.1152/jn.00616.2004

C. Rivera, J. Voipio, J. Payne, E. Ruusuvuori, H. Lahtinen et al., The K+/Cl??? co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, vol.89, issue.6716, pp.251-255, 1999.
DOI : 10.1073/pnas.89.20.9915

C. Rivera, J. Voipio, and K. K. , cotransporter KCC2 and carbonic anhydrase CAVII, The Journal of Physiology, vol.444, issue.Suppl, pp.27-36, 2005.
DOI : 10.1113/jphysiol.1991.sp018864

A. Robinson and D. Williamson, Physiological roles of ketone bodies as substrates and signals in mammalian tissues., Physiological Reviews, vol.60, issue.1, pp.143-187, 1980.
DOI : 10.1152/physrev.1980.60.1.143

A. Roos and W. Boron, Regulation of intracellular pH in barnacle muscle, Kroc Found Ser, vol.15, pp.205-219, 1981.

E. Ruusuvuori, I. Kirilkin, N. Pandya, and K. K. , Spontaneous Network Events Driven by Depolarizing GABA Action in Neonatal Hippocampal Slices are Not Attributable to Deficient Mitochondrial Energy Metabolism, Journal of Neuroscience, vol.30, issue.46, pp.15638-15642, 2010.
DOI : 10.1523/JNEUROSCI.3355-10.2010

URL : http://www.jneurosci.org/content/jneuro/30/46/15638.full.pdf

V. Safiulina, G. Fattorini, F. Conti, and E. Cherubini, GABAergic Signaling at Mossy Fiber Synapses in Neonatal Rat Hippocampus, Journal of Neuroscience, vol.26, issue.2, pp.597-608, 2006.
DOI : 10.1523/JNEUROSCI.4493-05.2006

URL : http://www.jneurosci.org/content/jneuro/26/2/597.full.pdf

E. Sernagor, C. Young, and S. Eglen, Developmental Modulation of Retinal Wave Dynamics: Shedding Light on the GABA Saga, The Journal of Neuroscience, vol.23, issue.20, pp.7621-7629, 2003.
DOI : 10.1523/JNEUROSCI.23-20-07621.2003

URL : http://www.jneurosci.org/content/23/20/7621.full.pdf

S. Sipilä, K. Huttu, J. Voipio, and K. K. , current, European Journal of Neuroscience, vol.25, issue.9, pp.2330-2338, 2006.
DOI : 10.1113/jphysiol.1991.sp018687

S. Sivakumaran, M. Mohajerani, and E. Cherubini, At Immature Mossy-Fiber-CA3 Synapses, Correlated Presynaptic and Postsynaptic Activity Persistently Enhances GABA Release and Network Excitability via BDNF and cAMP-Dependent PKA, Journal of Neuroscience, vol.29, issue.8, pp.2637-2647, 2009.
DOI : 10.1523/JNEUROSCI.5019-08.2009

A. Stil, S. Liabeuf, C. Jean-xavier, C. Brocard, J. Viemari et al., Developmental up-regulation of the potassium???chloride cotransporter type 2 in the rat lumbar spinal cord, Neuroscience, vol.164, issue.2, pp.809-821, 2009.
DOI : 10.1016/j.neuroscience.2009.08.035

P. Sullivan, C. Dubé, K. Dorenbos, O. Steward, and T. Baram, Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death, Annals of Neurology, vol.13, issue.suppl 2, pp.711-717, 2003.
DOI : 10.1016/0887-8994(95)00185-I

T. Takata and Y. Okada, Effects of deprivation of oxygen or glucose on the neural activity in the guinea pig hippocampal slice???intracellular recording study of pyramidal neurons, Brain Research, vol.683, issue.1, pp.109-116, 1995.
DOI : 10.1016/0006-8993(95)00318-K

T. Takata, T. Sakurai, Y. B. Yokono, K. Okada, and Y. , Effect of lactate on the synaptic potential, energy metabolism, calcium homeostasis and extracellular glutamate concentration in the dentate gyrus of the hippocampus from guinea-pig, Neuroscience, vol.104, issue.2, pp.371-378, 2001.
DOI : 10.1016/S0306-4522(01)00086-0

C. Takayama and Y. Inoue, Developmental localization of potassium chloride co-transporter 2 (KCC2), GABA and vesicular GABA transporter (VGAT) in the postnatal mouse somatosensory cortex, Neuroscience Research, vol.67, issue.2, pp.137-148, 2010.
DOI : 10.1016/j.neures.2010.02.010

J. Tanis, A. Bellemer, J. Moresco, B. Forbush, and M. Koelle, The Potassium Chloride Cotransporter KCC-2 Coordinates Development of Inhibitory Neurotransmission and Synapse Structure in Caenorhabditis elegans, Journal of Neuroscience, vol.29, issue.32, pp.9943-9954, 2009.
DOI : 10.1523/JNEUROSCI.1989-09.2009

L. Thio, M. Wong, and K. Yamada, Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission, Neurology, vol.54, issue.2, pp.325-331, 2000.
DOI : 10.1212/WNL.54.2.325

Y. Tsai, Y. Chou, A. Wu, C. Hu, C. Chen et al., Stereoselective effects of 3-hydroxybutyrate on glucose utilization of rat cardiomyocytes, Life Sciences, vol.78, issue.12, pp.1385-1391, 2006.
DOI : 10.1016/j.lfs.2005.07.013

R. Tyzio, A. Represa, I. Jorquera, Y. Ben-ari, H. Gozlan et al., The Establishment of GABAergic and Glutamatergic Synapses on CA1 Pyramidal Neurons is Sequential and Correlates with the Development of the Apical Dendrite, The Journal of Neuroscience, vol.19, issue.23, pp.10372-10382, 1999.
DOI : 10.1523/JNEUROSCI.19-23-10372.1999

URL : https://hal.archives-ouvertes.fr/inserm-00487269

R. Tyzio, A. Ivanov, C. Bernard, G. Holmes, Y. Ben-ari et al., Membrane Potential of CA3 Hippocampal Pyramidal Cells During Postnatal Development, Journal of Neurophysiology, vol.90, issue.5, pp.2964-2972, 2003.
DOI : 10.1113/jphysiol.1991.sp018864

URL : https://hal.archives-ouvertes.fr/inserm-00484799

R. Tyzio, R. Cossart, I. Khalilov, M. Minlebaev, C. Hübner et al., Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain During Delivery, Science, vol.314, issue.5806, pp.1788-1792, 2006.
DOI : 10.1126/science.1133212

URL : https://hal.archives-ouvertes.fr/inserm-00483930

R. Tyzio, G. Holmes, Y. Ben-ari, and R. Khazipov, Mediated Signaling from Excitation to Inhibition in CA3 Rat Hippocampus Using Gramicidin Perforated Patch and Extracellular Recordings, Epilepsia, vol.444, issue.5, pp.96-105, 2007.
DOI : 10.1113/jphysiol.1991.sp018864

R. Tyzio, M. Minlebaev, S. Rheims, A. Ivanov, I. Jorquera et al., Postnatal changes in somatic ??-aminobutyric acid signalling in the rat hippocampus, European Journal of Neuroscience, vol.444, issue.10, pp.2515-2528, 2008.
DOI : 10.1113/jphysiol.1991.sp018864

URL : https://hal.archives-ouvertes.fr/inserm-00483514

S. Vannucci and I. Simpson, Developmental switch in brain nutrient transporter expression in the rat, American Journal of Physiology-Endocrinology and Metabolism, vol.285, issue.5, pp.1127-1134, 2003.
DOI : 10.1007/BF00926756

A. Vassault, J. Bonnefont, N. Specola, and J. Saudubray, Lactate, pyruvate and ketone bodies In: Techniques in diagnostic human biochemical genetics a laboratory manual (Home FA, pp.285-308, 1991.

H. Wada, Y. Okada, T. Uzuo, and H. Nakamura, The effects of glucose, mannose, fructose and lactate on the preservation of neural activity in the hippocampal slices from the guinea pig, Brain Research, vol.788, issue.1-2, pp.144-150, 1998.
DOI : 10.1016/S0006-8993(97)01532-1

D. Wang and A. Kriegstein, GABA Regulates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation, Journal of Neuroscience, vol.28, issue.21, pp.5547-5558, 2008.
DOI : 10.1523/JNEUROSCI.5599-07.2008

R. Webber and E. J. , Utilization of L()-3-hydroxybutyrate, D()-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18-day-old rat, J Biol Chem, vol.252, pp.5222-5226, 1977.

M. Woodin, K. Ganguly, and M. Poo, Coincident Pre- and Postsynaptic Activity Modifies GABAergic Synapses by Postsynaptic Changes in Cl??? Transporter Activity, Neuron, vol.39, issue.5, pp.807-820, 2003.
DOI : 10.1016/S0896-6273(03)00507-5

G. Yellen, channels in the mechanism of the ketogenic diet, Epilepsia, vol.27, pp.80-82, 2008.
DOI : 10.1212/WNL.54.2.325

L. Zhu, N. Polley, G. Mathews, and E. Delpire, NKCC1 and KCC2 prevent hyperexcitability in the mouse hippocampus, Epilepsy Research, vol.79, issue.2-3, pp.201-212, 2008.
DOI : 10.1016/j.eplepsyres.2008.02.005

A. Ziemann, M. Schnizler, G. Albert, M. Severson, M. Howard et al., Seizure termination by acidosis depends on ASIC1a, Nature Neuroscience, vol.57, issue.7, pp.816-822, 2008.
DOI : 10.1016/0165-0270(86)90040-3

. Tyzio, , pp.34-45, 2011.