N. Rochefort, O. Garaschuk, R. Milos, M. Narushima, N. Marandi et al., Sparsification of neuronal activity in the visual cortex at eye-opening, Proceedings of the National Academy of Sciences, vol.1, issue.1, pp.15049-15054, 2009.
DOI : 10.1038/nmeth706

J. Wolfe, A. Houweling, and M. Brecht, Sparse and powerful cortical spikes, Current Opinion in Neurobiology, vol.20, issue.3, pp.306-312, 2010.
DOI : 10.1016/j.conb.2010.03.006

D. Inta, A. J. Von, E. Kreuzberg, M. Meyer, A. Van-hooft et al., Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone, Proceedings of the National Academy of Sciences, vol.8, issue.1, pp.20994-20999, 2008.
DOI : 10.1016/S0959-4388(98)80019-6

C. Mcbain and A. Fisahn, Interneurons unbound, Nature Reviews Neuroscience, vol.5, issue.1, pp.11-23, 2001.
DOI : 10.1002/hipo.450050110

G. Ascoli, L. Onso-nanclares, S. Anderson, G. Barrionuevo, R. Avides-piccione et al., Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex, Nat Rev Neurosci, vol.9, pp.557-568, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00292588

L. Luo, E. Callaway, and K. Svoboda, Genetic Dissection of Neural Circuits, Neuron, vol.57, issue.5, pp.634-660, 2008.
DOI : 10.1016/j.neuron.2008.01.002

J. Marshel, T. Mori, K. Nielsen, and E. Callaway, Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo, Neuron, vol.67, issue.4, pp.562-574, 2010.
DOI : 10.1016/j.neuron.2010.08.001

M. Scanziani and M. Haussesr, Electrophysiology in the age of light, Nature, vol.60, issue.7266, pp.930-939, 2009.
DOI : 10.1113/jphysiol.1973.sp010410

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, Complex networks: Structure and dynamics, Physics Reports, vol.424, issue.4-5, pp.175-308, 2006.
DOI : 10.1016/j.physrep.2005.10.009

S. Butt, M. Fuccillo, S. Nery, S. Noctor, A. Kriegstein et al., The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype, Neuron, vol.48, issue.4, pp.591-604, 2005.
DOI : 10.1016/j.neuron.2005.09.034

. Morphological, neurochemical and electrophysiological characterization of mature cortical interneurons, derived from ultrasound-guided transplantation of EGFP-expressing MGE and CGE cortical progenitors into wild type hosts, provided the first in vivo demonstration that the mature morpho-physiological fate of transplanted cells is intrinsically predetermined by their embryonic place and time of origin

M. Fogarty, M. Grist, D. Gelman, O. Marin, V. Pachnis et al., Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex, Journal of Neuroscience, vol.27, issue.41, pp.10935-10946, 2007.
DOI : 10.1523/JNEUROSCI.1629-07.2007

S. Butt, V. Sousa, M. Fuccillo, J. Hjerling-leffler, G. Miyoshi et al., The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes, Neuron, vol.59, issue.5, pp.722-732, 2008.
DOI : 10.1016/j.neuron.2008.07.031

G. Miyoshi, J. Hjerling-leffler, T. Karayannis, V. Sousa, S. Butt et al., Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons, Journal of Neuroscience, vol.30, issue.5, pp.1582-1594, 2010.
DOI : 10.1523/JNEUROSCI.4515-09.2010

C. Wonders and S. Anderson, The origin and specification of cortical interneurons, Nature Reviews Neuroscience, vol.5, issue.9, pp.687-696, 2006.
DOI : 10.1038/nn892

Q. Xu, I. Cobos, D. La, C. Rubenstein, J. Anderson et al., Origins of Cortical Interneuron Subtypes, Journal of Neuroscience, vol.24, issue.11, pp.2612-2622, 2004.
DOI : 10.1523/JNEUROSCI.5667-03.2004

Q. Xu, M. Tam, and S. Anderson, Fate mapping Nkx2.1-lineage cells in the mouse telencephalon, The Journal of Comparative Neurology, vol.31, issue.1, pp.16-29, 2008.
DOI : 10.1002/cne.21529

L. Tricoire, K. Pelkey, M. Daw, V. Sousa, G. Miyoshi et al., Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells, Journal of Neuroscience, vol.30, issue.6, pp.2165-2176, 2010.
DOI : 10.1523/JNEUROSCI.5123-09.2010

URL : https://hal.archives-ouvertes.fr/hal-00465517

, Comparison of the developmental origins of two presumably different subtypes of hippocampal interneurons, the Ivy and NOS+ Neurogliaform cells, using a combination of genetic, molecular, immunohistochemical and electrophysiological techniques, indicates that these cells share a common embryonic origin

G. Miyoshi and G. Fishell, Directing neuron-specific transgene expression in the mouse CNS, Current Opinion in Neurobiology, vol.16, issue.5, pp.577-584, 2006.
DOI : 10.1016/j.conb.2006.08.013

D. Bortone and F. Polleux, KCC2 Expression Promotes the Termination of Cortical Interneuron Migration in a Voltage-Sensitive Calcium-Dependent Manner, Neuron, vol.62, issue.1, pp.53-71, 2009.
DOI : 10.1016/j.neuron.2009.01.034

, A study showing that Lhx6-interneurons migrating in cultures of cortical neurons change their responsiveness to GABA from a motogenic to a stop signal when GABA actions switch from depolarizing to hyperpolarizing after the developmental upregulation of the potassium-chloride cotransporter KCC2

J. Manent, I. Jorquera, Y. Ben-ari, L. Aniksztejn, and A. Represa, Glutamate Acting on AMPA But Not NMDA Receptors Modulates the Migration of Hippocampal Interneurons, Journal of Neuroscience, vol.26, issue.22
DOI : 10.1523/JNEUROSCI.1033-06.2006

URL : https://hal.archives-ouvertes.fr/inserm-00483918

, J Neurosci, vol.26, pp.5901-5909, 2006.

F. Trigo, B. Bouhours, P. Rostaing, G. Papageorgiou, J. Corrie et al., Presynaptic Miniature Gabaergic Currents in Developing Interneurons, Neuron, vol.66, issue.2, pp.235-247, 2010.
DOI : 10.1016/j.neuron.2010.03.030

R. Corlew, M. Bosma, and W. Moody, Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones

, J Physiol, vol.560, pp.377-390, 2004.

V. Crepel, D. Aronov, I. Jorquera, A. Represa, Y. Ben-ari et al., A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus, Neuron, vol.54, issue.1, pp.105-120, 2007.
DOI : 10.1016/j.neuron.2007.03.007

URL : https://hal.archives-ouvertes.fr/inserm-00483533

, An in vitro analysis of the maturation of population coherence in the developing CA1 region of the hippocampus showing that the first synchronous electrical neuronal activity patterns emerge at birth in the form of Synchronous Plateau Assemblies. The emergence of coherent neuronal activity is controlled by the actions of oxytocin, a maternal hormone released during labour

S. He, J. Ma, N. Liu, and X. Yu, Early Enriched Environment Promotes Neonatal GABAergic Neurotransmission and Accelerates Synapse Maturation, Journal of Neuroscience, vol.30, issue.23, pp.7910-7916, 2010.
DOI : 10.1523/JNEUROSCI.6375-09.2010

, This study analyses the effects of neonatal environmental enrichment on the electrophysiological and biochemical properties of GABAergic and glutamatergic transmission in the hippocampus. Early postnatal enrichment enhances GABAergic transmission and accelerates the E/I shift in the actions of GABA

C. Allene and R. Cossart, Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations?, The Journal of Physiology, vol.5, issue.Suppl 2, pp.83-91, 2009.
DOI : 10.1038/nn0602-850

URL : https://hal.archives-ouvertes.fr/hal-01848197

A. Blankenship and M. Feller, Mechanisms underlying spontaneous patterned activity in developing neural circuits, Nature Reviews Neuroscience, vol.296, issue.1, pp.18-29, 2010.
DOI : 10.1111/j.1528-1167.2006.00839.x

C. Allene, A. Cattani, J. Ackman, P. Bonifazi, L. Aniksztejn et al., Sequential Generation of Two Distinct Synapse-Driven Network Patterns in Developing Neocortex, Journal of Neuroscience, vol.28, issue.48, pp.12851-12863, 2008.
DOI : 10.1523/JNEUROSCI.3733-08.2008

URL : https://hal.archives-ouvertes.fr/inserm-00483521

K. Marek, L. Kurtz, and N. Spitzer, cJun integrates calcium activity and tlx3 expression to regulate neurotransmitter specification, Nature Neuroscience, vol.32, issue.8, pp.944-950, 2010.
DOI : 10.1038/nn.2582

, A study in neurons of the dorsal embryonic spinal cord of Xenopus tropicalis providing a mechanistic basis for early endogeneous calcium activity to regulate intrinsic genetic pathways that specify neurotransmitter choice in developing neurons at critical developmental time points

A. De-lima, A. Gieseler, and T. Voigt, Relationship between GABAergic interneurons migration and early neocortical network activity, Developmental Neurobiology, vol.550, issue.2-3, pp.105-123, 2009.
DOI : 10.1007/978-1-4684-4868-9_17

J. Belforte, V. Zsiros, E. Sklar, Z. Jiang, G. Yu et al., Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes, Nature Neuroscience, vol.132, issue.1, pp.76-83, 2010.
DOI : 10.1001/archpsyc.1987.01800190080012

K. Do, J. Cabungcal, A. Frank, P. Steullet, and M. Cuenod, Redox dysregulation, neurodevelopment, and schizophrenia, Current Opinion in Neurobiology, vol.19, issue.2, pp.220-230, 2009.
DOI : 10.1016/j.conb.2009.05.001