L. Kumar and P. Sinha, Mapping salt-marsh land-cover vegetation using high-spatial and hyperspectral satellite data to assist wetland inventory, GIScience & Remote Sensing, vol.51, issue.2, pp.483-497, 2014.
DOI : 10.1016/j.jenvman.2007.06.028

C. Zhang, Combining Hyperspectral and Lidar Data for Vegetation Mapping in the Florida Everglades, Photogrammetric Engineering & Remote Sensing, vol.80, issue.8, pp.733-743, 2014.
DOI : 10.14358/PERS.80.8.733

Q. Feng, J. Liu, and J. Gong, UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis, Remote Sensing, vol.68, issue.1, pp.1074-1094, 2015.
DOI : 10.1080/01431160902929230

E. Belluco, M. Camuffo, S. Ferrari, L. Modenese, and S. Silvestri,

M. Marani and . Marani, Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing, Remote Sensing of Environment, vol.105, pp.54-67, 2006.

C. Zhang and Z. Xie, Object-based Vegetation Mapping in the Kissimmee River Watershed Using HyMap Data and Machine Learning Techniques, Wetlands, vol.124, issue.2, pp.233-244, 2013.
DOI : 10.1016/j.rse.2012.05.015

M. W. Matthew, S. M. Adler-golden, A. Berk, S. C. Richtsmeier, R. Y. Levine et al., Status of atmospheric correction using a MODTRAN4-based algorithm, " SPIE proceeding. Algorithms for multispectral, hyperspectral, and ultraspectral imagery VI, 199?207), p.4049, 2000.

G. Mozgeris, S. Gadal, D. Jonikavi?ius, L. Straigyt?, W. Ouerghemmi et al., Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments, 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)
DOI : 10.1109/WHISPERS.2016.8071756

URL : https://hal.archives-ouvertes.fr/hal-01359643