I. , World energy outlook 2016, 2016.

, Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, IPCC Geneva: IPCC, vol.2014

K. Weyer, D. Bush, A. Darzins, and B. Willson, Theoretical Maximum Algal Oil Production, BioEnergy Research, vol.19, issue.1, pp.204-217, 2010.
DOI : 10.1007/s12155-009-9046-x

A. Melis, Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency, Plant Science, vol.177, issue.4, pp.272-80, 2009.
DOI : 10.1016/j.plantsci.2009.06.005

Y. Chisti, Biodiesel from microalgae beats bioethanol, Trends in Biotechnology, vol.26, issue.3, pp.126-157, 2008.
DOI : 10.1016/j.tibtech.2007.12.002

J. Shurin, M. Burkart, S. Mayfield, and V. Smith, Recent progress and future challenges in algal biofuel production. F1000 Res, 2016.

H. Goold, F. Beisson, G. Peltier, and Y. Li-beisson, Microalgal lipid droplets: composition, diversity, biogenesis and functions, Plant Cell Reports, vol.1469, issue.4, pp.545-55, 2015.
DOI : 10.1016/S0005-2736(00)00294-7

V. Challagulla, S. Nayar, K. Walsh, and L. Fabbro, Advances in techniques for assessment of microalgal lipids, Critical Reviews in Biotechnology, vol.105, issue.5, pp.566-78, 2017.
DOI : 10.1002/lapl.201110060

J. Rumin, H. Bonnefond, B. Saint-jean, C. Rouxel, A. Sciandra et al., The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae, Biotechnology for Biofuels, vol.9, issue.2, p.42, 2015.
DOI : 10.1371/journal.pone.0086889

URL : https://hal.archives-ouvertes.fr/hal-01247087

W. Brown, T. Sullivan, and P. Greenspan, Nile red staining of lysosomal phospholipid inclusions, Histochemistry, vol.135, issue.4, pp.349-54, 1992.
DOI : 10.1007/BF00270037

J. Cirulis, B. Strasser, J. Scott, and G. Ross, Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability, Cytometry Part A, vol.111, issue.7, pp.618-644, 2012.
DOI : 10.1385/0-89603-124-1:1

URL : http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.22066/pdf

N. Ghoneim, Photophysics of Nile red in solution, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol.56, issue.5, pp.1003-1013, 2000.
DOI : 10.1016/S1386-1425(99)00199-7

P. Greenspan and S. Fowler, Spectrofluorometric studies of the lipid probe, Nile Red, J Lipid Res, vol.26, pp.781-790, 1985.
DOI : 10.1016/0020-711x(93)90111-q

O. Rourke, E. Soukas, A. Carr, C. , and R. G. , C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles, Cell Metabolism, vol.10, issue.5, pp.430-435, 2009.
DOI : 10.1016/j.cmet.2009.10.002

URL : https://hal.archives-ouvertes.fr/hal-01439531

W. Chen, M. Sommerfeld, and Q. Hu, Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae, Bioresource Technology, vol.102, issue.1, pp.135-176, 2011.
DOI : 10.1016/j.biortech.2010.06.076

L. Prioretti, L. Avilan, F. Carrière, M. Montané, B. Field et al., The inhibition of TOR in the model diatom Phaeodactylum tricornutum promotes a get-fat growth regime, Algal Research, vol.26, pp.265-74, 2017.
DOI : 10.1016/j.algal.2017.08.009

URL : https://hal.archives-ouvertes.fr/hal-01696878

W. Chen, C. Zhang, L. Song, M. Sommerfeld, and Q. Hu, A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae, Journal of Microbiological Methods, vol.77, issue.1, pp.41-48, 2009.
DOI : 10.1016/j.mimet.2009.01.001

T. Doan and J. Obbard, Improved Nile Red staining of Nannochloropsis sp., Journal of Applied Phycology, vol.35, issue.5, pp.895-901, 2011.
DOI : 10.1080/09670260010001735711

H. Mendoza-guzmán, . De-la-jara, A. Valido, C. Duarte, L. et al., Analysis of interspecific variation in relative fatty acid composition: use of flow cytometry to estimate unsaturation index and relative polyunsaturated fatty acid content in microalgae, Journal of Applied Phycology, vol.31, issue.1, pp.7-15, 2011.
DOI : 10.1016/0031-9422(92)83694-T

T. Mutanda, R. D. Karthikeyan, S. Kumari, S. Anandraj, A. Bux et al., Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production, Bioresource Technology, vol.102, issue.1, pp.57-70, 2011.
DOI : 10.1016/j.biortech.2010.06.077

U. Pick and T. Rachutin-zalogin, Kinetic anomalies in the interactions of Nile red with microalgae, Journal of Microbiological Methods, vol.88, issue.2, pp.189-96, 2012.
DOI : 10.1016/j.mimet.2011.10.008

I. Sitepu, L. Ignatia, A. Franz, D. Wong, S. Faulina et al., An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species, Journal of Microbiological Methods, vol.91, issue.2, pp.321-329, 2012.
DOI : 10.1016/j.mimet.2012.09.001

M. Cooper, W. Hardin, T. Petersen, and R. Cattolico, Visualizing "green oil" in live algal cells, Journal of Bioscience and Bioengineering, vol.109, issue.2, pp.198-201, 2010.
DOI : 10.1016/j.jbiosc.2009.08.004

H. De-la, H. Siegler, W. Ayidzoe, A. Ben-zvi, R. Burrell et al., Improving the reliability of fluorescence-based neutral lipid content measurements in microalgal cultures, Algal Research, vol.1, issue.2, pp.176-84, 2012.
DOI : 10.1016/j.algal.2012.07.004

J. Spandl, D. White, J. Peychl, and C. Thiele, Live Cell Multicolor Imaging of Lipid Droplets with a New Dye, LD540, Traffic, vol.118, issue.11, pp.1579-84, 2009.
DOI : 10.1111/j.1600-0854.2009.00980.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0854.2009.00980.x/pdf

J. Park, N. S. Lee, Y. Lee, S. Park, S. Jeon et al., Measurement of Lipid Droplet Accumulation Kinetics in Chlamydomonas reinhardtii Using Seoul-Fluor, Energies, vol.2, issue.11, p.5703, 2013.
DOI : 10.1016/j.mimet.2006.11.008

URL : http://www.mdpi.com/1996-1073/6/11/5703/pdf

H. Yang, C. Hsu, J. Yang, and W. Yang, Monodansylpentane as a Blue-Fluorescent Lipid-Droplet Marker for Multi-Color Live-Cell Imaging, PLoS ONE, vol.399, issue.3, p.32693, 2012.
DOI : 10.1371/journal.pone.0032693.s005

URL : https://doi.org/10.1371/journal.pone.0032693

S. Gidda, S. Park, M. Pyc, O. Yurchenko, Y. Cai et al., Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells, Plant Physiology, vol.170, issue.4, pp.2052-71, 2016.
DOI : 10.1104/pp.15.01977

S. Kuntam, L. Puskas, and F. Ayaydin, Characterization of a new class of blue-fluorescent lipid droplet markers for live-cell imaging in plants, Plant Cell Reports, vol.7, issue.3, pp.655-65, 2015.
DOI : 10.1371/journal.pone.0032693

L. Puskas, L. Feher, C. Vizler, F. Ayaydin, E. Raso et al., Polyunsaturated fatty acids synergize with lipid droplet binding thalidomide analogs to induce oxidative stress in cancer cells, Lipids in Health and Disease, vol.9, issue.1, p.56, 2010.
DOI : 10.1186/1476-511X-9-56

E. Harris, The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use, 1989.

S. Imamura, Y. Kanesaki, M. Ohnuma, T. Inouye, Y. Sekine et al., R2R3-type MYB transcription factor, CmMYB1, is a central nitrogen assimilation regulator in Cyanidioschyzon merolae, Proceedings of the National Academy of Sciences, vol.27, issue.17, pp.12548-53, 2009.
DOI : 10.1038/emboj.2008.151

S. Imamura, Y. Kawase, I. Kobayashi, M. Shimojima, H. Ohta et al., TOR (target of rapamycin) is a key regulator of triacylglycerol accumulation in microalgae, Plant Signaling & Behavior, vol.11, issue.3, p.1149285, 2016.
DOI : 10.1104/pp.105.070847

. Harchouni, 11:120 ? fast, convenient online submission ? thorough peer review by experienced researchers in your field ? rapid publication on acceptance ? support for research data, including large and complex data types ? gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year ? At BMC, research is always in progress, Biotechnol Biofuels, 2018.

, Learn more biomedcentral.com/submissions Ready to submit your research ? Choose BMC and benefit from

R. Guillard, Culture of phytoplankton for feeding marine invertebrates Culture of marine invertebrate animals: proceedings?1st conference on culture of marine invertebrate animals greenport, pp.29-60, 1975.

L. Alipanah, J. Rohloff, P. Winge, A. Bones, and T. Brembu, Journal of Experimental Botany, vol.24, issue.20, pp.6281-96, 2015.
DOI : 10.1146/annurev.arplant.57.032905.105421

M. Griffiths and S. Harrison, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, Journal of Applied Phycology, vol.97, issue.5, pp.493-507, 2009.
DOI : 10.1007/BF00005683

M. Bromke, J. Sabir, F. Alfassi, N. Hajarah, S. Kabli et al., Metabolomic Profiling of 13 Diatom Cultures and Their Adaptation to Nitrate-Limited Growth Conditions, PLOS ONE, vol.139, issue.58, p.138965, 2015.
DOI : 10.1371/journal.pone.0138965.s002

S. Imamura, Y. Kawase, I. Kobayashi, T. Sone, A. Era et al., Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae, Plant Molecular Biology, vol.124, issue.3, pp.309-327, 2015.
DOI : 10.1016/j.cell.2006.01.016

S. Mukaida, T. Ogawa, K. Ohishi, Y. Tanizawa, D. Ohta et al., Bioscience, Biotechnology, and Biochemistry, vol.35, issue.6, pp.1223-1232, 2016.
DOI : 10.1128/EC.00393-06

M. Pérez-pérez, I. Couso, and J. Crespo, The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii, Biomolecules, vol.402, issue.4, p.54, 2017.
DOI : 10.1038/nature12030

M. Miquel, G. Trigui, S. Andrea, Z. Kelemen, S. Baud et al., Specialization of Oleosins in Oil Body Dynamics during Seed Development in Arabidopsis Seeds, PLANT PHYSIOLOGY, vol.164, issue.4, pp.1866-78, 2014.
DOI : 10.1104/pp.113.233262

Y. Hayashi and A. Shinozaki, Visualization of microbodies in Chlamydomonas reinhardtii, Journal of Plant Research, vol.16, issue.4, pp.579-86, 2012.
DOI : 10.1046/j.1365-313x.1998.00320.x