R. W. Ahmad, A. Gani, S. H. Hamid, F. Xia, and M. Shiraz, A Review on mobile application energy profiling: Taxonomy, state-of-the-art, and open research issues, Journal of Network and Computer Applications, vol.58, pp.42-59, 2015.
DOI : 10.1016/j.jnca.2015.09.002

M. L. Altamimi and K. Naik, A Computing Profiling Procedure for Mobile Developers to Estimate Energy Cost, Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM '15, pp.301-305, 2015.
DOI : 10.1145/1878961.1878982

, ARM Inc. Technologies ? big.LITTLE ? Arm Developer

A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury, Detecting energy bugs and hotspots in mobile apps, Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014, pp.588-598, 2014.
DOI : 10.1145/2635868.2635871

L. Caviglione, M. Gaggero, J. F. Lalande, W. Mazurczyk, and M. Urba´nskiurba´nski, Seeing the Unseen: Revealing Mobile Malware Hidden Communications via Energy Consumption and Artificial Intelligence, IEEE Transactions on Information Forensics and Security, vol.11, issue.4, pp.799-810, 2016.
DOI : 10.1109/TIFS.2015.2510825

URL : https://hal.archives-ouvertes.fr/hal-01247495

S. A. Chowdhury and A. Hindle, GreenOracle, Proceedings of the 13th International Workshop on Mining Software Repositories, MSR '16, pp.49-60, 2016.
DOI : 10.1145/1878961.1878982

D. Nucci, D. Palomba, F. Prota, A. Panichella, A. Zaidman et al., PETrA: A Software-Based Tool for Estimating the Energy Profile of Android Applications, 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), pp.3-6, 2017.
DOI : 10.1109/ICSE-C.2017.18

D. Nucci, D. Palomba, F. Prota, A. Panichella, A. Zaidman et al., Software-based energy profiling of Android apps: Simple, efficient and reliable? In SANER 2017 -24th IEEE Int, Conf. Softw. Anal. Evol. Reengineering, vol.15, pp.103-114, 2017.

O. Djedidi, M. A. Djeziri, N. K. Sirdi, and A. Naamane, Modular Modelling of an Embedded Mobile CPU-GPU Chip for Feature Estimation, Proceedings of the 14th International Conference on Informatics in Control, Automation and Robotics, 2017.
DOI : 10.5220/0006470803380345

URL : https://hal.archives-ouvertes.fr/hal-01770233

, Proc. 14th Int. Conf. Informatics Control, pp.338-345

M. Dong and L. Zhong, Self-constructive high-rate system energy modeling for battery-powered mobile systems, Proceedings of the 9th international conference on Mobile systems, applications, and services, MobiSys '11, 2011.
DOI : 10.1145/1999995.2000027

G. Inc, Measuring Power Values ? Android Open Source Project, 2017.

M. Gordon, L. Zhang, and B. Tiwana, PowerTutor, 2011.

Y. Guo, C. Wang, C. , and X. , Understanding Application-Battery Interactions on Smartphones: A Large-Scale Empirical Study, IEEE Access, vol.5, pp.13387-13400, 2017.
DOI : 10.1109/ACCESS.2017.2728620

M. A. Hoque, M. Siekkinen, K. N. Khan, Y. Xiao, and S. Tarkoma, Modeling, Profiling, and Debugging the Energy Consumption of Mobile Devices, 2015.

, ACM Comput. Surv, vol.48, issue.3, pp.1-40

J. Huang, R. Li, J. An, D. Ntalasha, F. Yang et al., Energy-Efficient Resource Utilization for Heterogeneous Embedded Computing Systems, IEEE Transactions on Computers, vol.66, issue.9, pp.1518-1531, 2017.
DOI : 10.1109/TC.2017.2693186

W. Jung, C. Kang, C. Yoon, D. D. Kim, C. et al., DevScope, Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, CODES+ISSS '12, p.353, 2012.
DOI : 10.1145/2380445.2380502

D. Kim, Y. Chon, W. Jung, Y. Kim, C. et al., Accurate Prediction of Available Battery Time for Mobile Applications, ACM Transactions on Embedded Computing Systems, vol.15, issue.3, pp.1-17, 2016.
DOI : 10.1145/1982185.1982327

K. Kim, D. Shin, Q. Xie, Y. Wang, M. Pedram et al., FEPMA: Fine-Grained Event- Driven Power Meter for Android Smartphones Based on Device Driver Layer Event Monitoring, Des. Autom. Test Eur. Conf. Exhib, pp.1-6, 2014.

M. Kim and S. W. Chung, Accurate GPU power estimation for mobile device power profiling, 2013.

P. Int, Conf. Consum. Electron, pp.183-184

M. Kim, J. Kong, C. , and S. W. , Enhancing online power estimation accuracy for smartphones, IEEE Transactions on Consumer Electronics, vol.58, issue.2, pp.333-339, 2012.
DOI : 10.1109/TCE.2012.6227431

Y. G. Kim, M. Kim, J. M. Kim, M. Sung, C. et al., A Novel GPU Power Model for Accurate Smartphone Power Breakdown, ETRI Journal, vol.37, issue.1, pp.157-164, 2015.
DOI : 10.1145/1966445.1966460

R. Mittal, A. Kansal, C. , and R. , Empowering developers to estimate app energy consumption, Proceedings of the 18th annual international conference on Mobile computing and networking, Mobicom '12, p.317, 2012.
DOI : 10.1145/2348543.2348583

A. Pathak, Y. C. Hu, and M. Zhang, Where is the energy spent inside my app?, Proceedings of the 7th ACM european conference on Computer Systems, EuroSys '12, pp.29-42, 2012.
DOI : 10.1145/2168836.2168841

, Qualcomm Innovation Center, I. Trepn Profiler -Android Apps on Google Play

N. K. Shukla, R. Pila, R. , and S. , Utilizationbased power consumption profiling in smartphones, Proc. 2016 2nd Int. Conf. Contemp. Comput. Informatics , IC3I 2016, pp.881-886, 2016.

A. Shye, B. Scholbrock, and G. Memik, Into the wild, Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, Micro-42, pp.168-178, 2009.
DOI : 10.1145/1669112.1669135

M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang et al., Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.36, issue.1, pp.106-119, 2017.
DOI : 10.1109/TCAD.2016.2562920

H. Xie, H. Tang, and Y. H. Liao, Time series prediction based on narx neural networks: An advanced approach, Proc. 2009 Int. Conf, pp.1275-1279, 2009.

F. Xu, Y. Liu, Q. Li, and Y. Zhang, V-edge: fast self-constructive power modeling of smartphones based on battery voltage dynamics, nsdi'13 Proc. 10th USENIX Conf. Networked Syst. Des. Implement, pp.43-55, 2013.

C. Yoon, S. Lee, Y. Choi, R. Ha, C. et al., Accurate power modeling of modern mobile application processors, Journal of Systems Architecture, vol.81, pp.17-31, 2017.
DOI : 10.1016/j.sysarc.2017.10.001

L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick et al., Accurate online power estimation and automatic battery behavior based power model generation for smartphones, Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis, CODES/ISSS '10, p.105, 2010.
DOI : 10.1145/1878961.1878982