S. Irwin, E. Driver, E. Lyon, C. Schrupp, G. Ryan et al., , p.753

R. Basaraba, E. Nuermberger, and A. Lenaerts, Presence of multiple lesion 754 types with vastly different microenvironments in C3HeB/FeJ mice following 755 aerosol infection with Mycobacterium tuberculosis, Disease models & 756 mechanisms, pp.591-602, 2015.

C. Barry and V. Dartois, Heterogeneity in tuberculosis 758 pathology, microenvironments and therapeutic responses, Immunological 759 reviews, pp.288-307, 2015.

G. Manina, N. Dhar, and J. Mckinney, , p.761, 2015.

, Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing 762 metabolically active forms, Cell host & microbe, vol.17, pp.32-46

P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch et al., , p.764

J. Emile, B. Marchou, P. Cardona, C. De-chastellier, and F. Altare, Foamy 765 macrophages from tuberculous patients' granulomas constitute a nutrient-rich 766 reservoir for M. tuberculosis persistence, PLoS Pathog, vol.4, issue.6, 2008.

R. Hunter, C. Jagannath, and J. Actor, Pathology of postprimary tuberculosis 768 in humans and mice: contradiction of long-held beliefs, Tuberculosis (Edinb), vol.769, issue.87, pp.267-78, 2007.

I. Caire-brandli, A. Papadopoulos, W. Malaga, D. Marais, S. Canaan et al., , p.771

C. Chastellier, Reversible Lipid Accumulation and Associated Division 772, 2014.

, Arrest of Mycobacterium avium in Lipoprotein-Induced Foamy Macrophages 773

, May Resemble Key Events during Latency and Reactivation of Tuberculosis, Infection and immunity, vol.82, pp.476-90

N. Garton, S. Waddell, A. Sherratt, S. Lee, R. Smith et al., , p.776

K. Rajakumar, R. Adegbola, G. Besra, P. Butcher, and M. Barer, , 2008.

, Cytological and transcript analyses reveal fat and lazy persister-like bacilli in 778 tuberculous sputum, PLoS Med, vol.5, p.75

J. Daniel, T. Sirakova, and P. Kolattukudy, An acyl-CoA synthetase in 780, 2014.

, Mycobacterium tuberculosis involved in triacylglycerol accumulation during 781 dormancy, PLoS ONE, vol.9, pp.114877-782

J. Daniel, H. Maamar, C. Deb, T. Sirakova, and P. Kolattukudy, , 2011.

, Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid 784 droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages

, PLoS Pathog, vol.7, issue.786, p.11

N. Kapoor, S. Pawar, T. Sirakova, C. Deb, W. Warren et al., , 2013.

, Human granuloma in vitro model, for TB dormancy and resuscitation, PLoS, vol.788, issue.8, pp.53657-789

A. Viljoen, M. Blaise, C. De-chastellier, and L. Kremer, MAB_3551c encodes the 790 primary triacylglycerol synthase involved in lipid accumulation in Mycobacterium 791 abscessus. Molecular microbiology, p.13, 2016.

R. Dhouib, A. Ducret, P. Hubert, F. Carriere, S. Dukan et al., Watching 793 intracellular lipolysis in mycobacteria using time lapse fluorescence microscopy, p.794, 2011.

, Biochim Biophys Acta, vol.1811, pp.234-275

P. Santucci, F. Bouzid, N. Smichi, I. Poncin, L. Kremer et al., Experimental Models of Foamy Macrophages and 797 Approaches for Dissecting the Mechanisms of Lipid Accumulation and

, Consumption during Dormancy and Reactivation of Tuberculosis. Frontiers in 799 cellular and infection microbiology 6:122, p.15

J. Daniel, N. Kapoor, T. Sirakova, R. Sinha, and P. Kolattukudy, The perilipin-like 801 PPE15 protein in Mycobacterium tuberculosis is required for triacylglycerol 802 accumulation under dormancy-inducing conditions. Molecular microbiology, p.16, 2016.

L. Dedieu, C. Serveau-avesque, L. Kremer, S. Canaan, G. Singh et al., Mycobacterial lipolytic enzymes: A gold mine for tuberculosis research, Lipid hydrolizing enzymes in virulence, pp.66-73, 2010.
DOI : 10.1016/j.biochi.2012.07.008

, Mycobacterium tuberculosis as a model system, Crit Rev Microbiol, vol.36, issue.807, pp.259-69

M. Daleke, A. Cascioferro, K. De-punder, R. Ummels, A. Abdallah et al., , p.809, 2011.

P. , PPE) protein domains target LipY lipases of pathogenic 810 mycobacteria to the cell surface via the ESX-5 pathway, J Biol Chem, vol.811, issue.286, pp.19024-19058

R. Dhouib, F. Laval, F. Carriere, M. Daffe, and S. Canaan, , p.813, 2010.

, lipase from Mycobacterium smegmatis Involved in bacterial cell interaction, J 814 Bacteriol, vol.192, pp.4776-85

M. Schué, D. Maurin, R. Dhouib, N. Goma, J. Delorme et al., show very different lipolytic activities reflecting their physiological function, The FASEB Journal, vol.24, issue.6, pp.1893-903
DOI : 10.1111/j.1365-2958.2007.05761.x

C. Deb, J. Daniel, T. Sirakova, B. Abomoelak, V. Dubey et al., 820 A novel lipase belonging to the hormone-sensitive lipase family induced under 821 starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis, J Biol, vol.822, issue.281, pp.3866-75, 2006.

K. Mishra, C. De-chastellier, Y. Narayana, P. Bifani, A. Brown et al., , p.824

V. Katoch, B. Joshi, K. Balaji, and L. Kremer, Functional role of the PE 825 domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol 826, 2008.

, hydrolase LipY. Infection and immunity, vol.76, pp.127-167

V. Delorme, S. Diomande, L. Dedieu, J. Cavalier, F. Carriere et al., MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth, PLoS ONE, vol.7, issue.9, pp.46493-831, 2012.
DOI : 10.1371/journal.pone.0046493.s004

C. Vandenbroucke-grauls, B. Appelmelk, and W. Bitter, Type VII secretion- 833 -mycobacteria show the way, Nat Rev Microbiol, vol.5, pp.883-91, 2007.

T. Verboom and E. Weerdenburg, , p.835

C. Jimenez, M. Parra, N. Cadieux, M. Brennan, B. Appelmelk et al., 836 PPE and PE_PGRS proteins of Mycobacterium marinum are transported via 837 the type VII secretion system ESX-5, Molecular microbiology, vol.73, issue.838, pp.329-369, 2009.

M. Daleke, R. Ummels, P. Bawono, J. Heringa, and C. Vandenbroucke-grauls, , p.839

J. Luirink and W. Bitter, General secretion signal for the mycobacterial type VII 840 secretion pathway, Proceedings of the National Academy of Sciences of the 841 United States of America, pp.11342-11349, 2012.

R. Chaturvedi, K. Bansal, Y. Narayana, N. Kapoor, N. Sukumar et al., The multifunctional PE_PGRS11 protein from Mycobacterium 845 tuberculosis plays a role in regulating resistance to oxidative stress, J Biol Chem, vol.844, issue.285, pp.30389-403, 2010.

C. Garrett, L. Broadwell, C. Hayne, and S. Neher, Modulation of the Activity 848 of Mycobacterium tuberculosis LipY by Its PE Domain Mycobacteria and the greasy macrophage: getting fat and 851 frustrated, Infection and immunity, vol.82, pp.472-477, 2015.

C. Williams, M. Anandhakrishnan, C. Poulsen, and M. Ehebauer, , p.853

M. Wilmanns, Improved mycobacterial protein production using a 854, 2011.

, Mycobacterium smegmatis groEL1DeltaC expression strain, BMC Biotechnol, vol.855, issue.856, pp.27-31

R. Goude, D. Roberts, and T. Parish, Electroporation of mycobacteria, Methods Mol Biol, vol.857, issue.1285, pp.117-147, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134392

K. Low, P. Rao, G. Shui, A. Bendt, K. Pethe et al., , 2009.

, Triacylglycerol utilization is required for regrowth of in vitro hypoxic 860 nonreplicating Mycobacterium bovis bacillus Calmette-Guerin, J Bacteriol, vol.861, issue.191, pp.5037-5080

T. Kong, A. Coates, P. Butcher, C. Hickman, and T. Shinnick, , 1993.

, Mycobacterium tuberculosis expresses two chaperonin-60 homologs, 864 Proceedings of the National Academy of Sciences of the United States, p.865

, America, vol.90, pp.2608-2620

A. Ojha, M. Anand, A. Bhatt, L. Kremer, W. Jacobs et al., GroEL1: A Dedicated Chaperone Involved in Mycolic Acid Biosynthesis during Biofilm Formation in Mycobacteria, Cell, vol.123, issue.5, pp.861-73, 2005.
DOI : 10.1016/j.cell.2005.09.012

S. Daugelat, J. Kowall, J. Mattow, D. Bumann, R. Winter et al.,

, The RD1 proteins of Mycobacterium tuberculosis: expression in 871

, Mycobacterium smegmatis and biochemical characterization, Microbes Infect, vol.872, issue.5, pp.1082-95

C. Stover, V. De-la-cruz, T. Fuerst, J. Burlein, L. Benson et al.,

G. Bansal, J. Young, M. Lee, and G. Hatfull, New use of BCG for 875 recombinant vaccines, Nature, vol.351, pp.456-60, 1991.

B. Brust, M. Lecoufle, E. Tuaillon, L. Dedieu, S. Canaan et al., Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for 878 the diagnosis of active tuberculosis, PLoS One, vol.877, issue.879, pp.25078-25116, 2011.

U. Laemmli, Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, vol.244, issue.5259, pp.680-685, 1970.
DOI : 10.1101/SQB.1963.028.01.053

R. Malla, S. Diomande, B. Martin, V. Delorme, F. Carriere et al., , p.882

N. Rath, C. Spilling, and J. Cavalier, Synthesis and kinetic evaluation of 883 cyclophostin and cyclipostins phosphonate analogs as selective and potent 884 inhibitors of microbial lipases, J Med Chem, vol.55, pp.10204-10223, 2012.

S. Ulker, C. Placidi, V. Point, and B. Gadenne,

F. Carriere, J. Cavalier, A. Roy, A. Kucukural, and Y. Zhang, New lipase assay using Pomegranate oil coating 887 in microtiter plates I-TASSER: a unified platform for 889 automated protein structure and function prediction, Biochimie. Nature protocols, vol.888, issue.890, pp.725-763, 2010.

Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics, vol.9, issue.1, pp.40-43, 2008.
DOI : 10.1186/1471-2105-9-40

F. Corpet, Multiple sequence alignment with hierarchical clustering, Nucleic Acids Research, vol.16, issue.22, pp.10881-90, 1988.
DOI : 10.1093/nar/16.22.10881

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Research, vol.1252, issue.W1, pp.320-324, 2014.
DOI : 10.1016/0167-4838(95)00123-C

P. Hadvàry, H. Lengsfeld, and H. Wolfer, by the covalent inhibitor tetrahydrolipstatin, Biochemical Journal, vol.256, issue.2, pp.357-361, 1988.
DOI : 10.1042/bj2560357

P. Yang, K. Liu, M. Ngai, M. Lear, M. Wenk et al., , p.899, 2010.

, proteome profiling of potential cellular targets of Orlistat--an FDA-approved drug 900 with anti-tumor activities, J Am Chem Soc, vol.132, pp.656-66

R. Nelson and J. Miles, The use of orlistat in the treatment of obesity, dyslipidaemia and Type 2 diabetes, Expert Opinion on Pharmacotherapy, vol.50, issue.5, pp.2483-91, 2005.
DOI : 10.1007/s002280050134

P. Hadvàry, W. Sidler, W. Meister, W. Vetter, and H. Wolfer, The lipase inhibitor 904 tetrahydrolipstatin binds covalently to the putative active site serine of 905 pancreatic lipase, J Biol Chem, vol.266, pp.2021-2027, 1991.

M. Ravindran, S. Rao, X. Cheng, A. Shukla, A. Cazenave-gassiot et al., , p.907

M. Wenk, Targeting Lipid Esterases in Mycobacteria Grown Under 908 Different Physiological Conditions Using Activity-based Profiling with 909, 2014.

, Molecular & cellular proteomics, Tetrahydrolipstatin MCP, vol.13, issue.910, pp.435-483

B. Ali, Y. Chahinian, H. Petry, S. Muller, G. Lebrun et al., , p.911

L. Mandrich, M. Rossi, G. Manco, L. Sarda, and A. Abousalham, Use of an 912 inhibitor to identify members of the hormone-sensitive lipase family, Biochemistry, vol.45, pp.14183-91, 0913.

S. Fishbein, N. Van-wyk, R. Warren, and S. Sampson, pathogenicity, Molecular Microbiology, vol.69, issue.5, pp.901-917, 2015.
DOI : 10.1111/2049-632X.12096

N. West, F. Chow, E. Randall, J. Wu, J. Chen et al., , 2009.

, Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their 919

, variable enzymatic functions and active site identification, FASEB J, vol.23, pp.1694-920

D. Russell, P. Cardona, M. Kim, S. Allain, A. F. Barisch et al., Foamy macrophages and the progression of the human tuberculosis granuloma, Lipid droplet 925 dynamics at early stages of Mycobacterium marinum infection in Dictyostelium. 926 Cellular microbiology. 927 55. Barisch C, Soldati T. 2017. Mycobacterium marinum Degrades Both 928, pp.943-923, 2009.
DOI : 10.1038/ni.1758

, Triacylglycerols and Phospholipids from Its Dictyostelium Host to Synthesise Its 929

, Own Triacylglycerols and Generate Lipid Inclusions. PLoS pathogens 930 13:e1006095, p.56

E. Munoz-elias and J. Mckinney, Carbon metabolism of intracellular bacteria, Cellular Microbiology, vol.66, issue.1, pp.10-22, 2006.
DOI : 10.1128/JB.182.11.3088-3096.2000

S. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher et al., , p.934

K. Eiglmeier, S. Gas, C. Barry, F. Tekaia, K. Badcock et al., , p.935

T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell et al., , p.936

S. Holroyd, T. Hornsby, K. Jagels, and B. Barrell, Deciphering the biology 937 of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.938, issue.393, pp.537-581, 1998.

K. Dhouib, R. Douchet, I. Chahinian, H. De-caro, A. Carriere et al., Characterization of an exported monoglyceride lipase from 941, 2007.

, Mycobacterium tuberculosis possibly involved in the metabolism of host cell 942 membrane lipids, Biochem J, vol.408, pp.417-444

J. Daniel, C. Deb, V. Dubey, T. Sirakova, B. Abomoelak et al., , p.944

P. Kolattukudy, Induction of a novel class of diacylglycerol 945 acyltransferases and triacylglycerol accumulation in Mycobacterium 946 39 tuberculosis as it goes into a dormancy-like state in culture, J Bacteriol, vol.947, issue.186, pp.5017-5047, 2004.