The MIT Bag Model as an infinite mass limit - Archive ouverte HAL Access content directly
Journal Articles Journal de l'École polytechnique — Mathématiques Year : 2019

The MIT Bag Model as an infinite mass limit

(1) , (2) , (3) , (4, 5)
1
2
3
4
5

Abstract

The Dirac operator, acting in three dimensions, is considered. Assuming that a large mass $m>0$ lies outside a smooth and bounded open set $\Omega\subset\R^3$, it is proved that its spectrum is approximated by the one of the Dirac operator on $\Omega$ with the MIT bag boundary condition. The approximation, which is developed up to and error of order $o(1/\sqrt m)$, is carried out by introducing tubular coordinates in a neighborhood of $\partial\Omega$ and analyzing the corresponding one dimensional optimization problems in the normal direction.
Fichier principal
Vignette du fichier
ALMR19_8May.pdf (487.99 Ko) Télécharger le fichier
Origin : Publication funded by an institution
Loading...

Dates and versions

hal-01863065 , version 1 (28-08-2018)
hal-01863065 , version 2 (24-05-2019)

Licence

Attribution - NonCommercial - ShareAlike - CC BY 4.0

Identifiers

Cite

Naiara Arrizabalaga, Loïc Le Treust, Albert Mas, Nicolas Raymond. The MIT Bag Model as an infinite mass limit. Journal de l'École polytechnique — Mathématiques, 2019, 6, pp.329-365. ⟨10.5802/jep.95⟩. ⟨hal-01863065v2⟩
367 View
191 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More