ECM - École Centrale de Marseille : UMR7373 (Pôle de l'étoile - Technopole de Château-Gombert - 38 rue Frédéric Joliot-Curie - 13013 Marseille - France)
AGROCAMPUS OUEST (Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage - 65, rue de St Brieuc - CS 84215 - 35042 Rennes cedex - France)
Abstract : The Dirac operator, acting in three dimensions, is considered. Assuming that a large mass $m>0$ lies outside a smooth and bounded open set $\Omega\subset\R^3$, it is proved that its spectrum is approximated by the one of the Dirac operator on $\Omega$ with the MIT bag boundary condition. The approximation, which is developed up to and error of order $o(1/\sqrt m)$, is carried out by introducing tubular coordinates in a neighborhood of $\partial\Omega$ and analyzing the corresponding one dimensional optimization problems in the normal direction.
https://hal-amu.archives-ouvertes.fr/hal-01863065
Contributor : Loïc Le Treust <>
Submitted on : Friday, May 24, 2019 - 8:15:18 PM Last modification on : Friday, January 8, 2021 - 3:40:31 AM
Naiara Arrizabalaga, Loïc Le Treust, Albert Mas, Nicolas Raymond. The MIT Bag Model as an infinite mass limit. Journal de l'École polytechnique — Mathématiques, École polytechnique, 2019, 6, pp.329-365. ⟨10.5802/jep.95⟩. ⟨hal-01863065v2⟩