Past and future global transformation of terrestrial ecosystems under climate change

To cite this version:
Connor Nolan, Jonathan T. Overpeck, Judy R. M. Allen, Patricia M. Anderson, Julio L. Betancourt, et al.. Past and future global transformation of terrestrial ecosystems under climate change. Science, American Association for the Advancement of Science, 2018, 361 (6405), pp.920-923. 10.1126/science.aan5360. hal-01870934
Past and future global transformation of terrestrial ecosystems under climate change


Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.

Terrestrial ecosystem function is governed largely by the composition and physical structure of vegetation (4–9), and climate change impacts on vegetation can potentially cause disruption of ecosystem services and loss of biodiversity (4, 5). It is critical to assess the likely extent of ecosystem transformation as global greenhouse gas (GHG) emissions increase (6) and to understand the full potential magnitude of impacts should current GHG emission rates continue unabated. Ecosystem transformation generally involves the replacement of dominant plant species or functional types by others, whether recruited locally or migrating from afar. Observations from around the globe indicate that current climate change may already be driving substantial changes in vegetation composition and structure (9). Ecosystem change is accelerated by mass mortality of incumbent dominants (7, 8), and widespread dieback events and other large disturbances are already under way in many forests and woodlands (9–11), with further mortality events predicted under increasing temperatures and drought (9, 10, 12). Replacement of predisturbance dominants by other species and growth forms has been widely documented (9, 13, 14). In addition, evidence is accumulating for geographic range shifts in individual species, and climate change is interacting with invasive species, fire regimes, land use, and CO2 increase to drive vegetation changes in many regions (15, 16).

Beyond observations of recent and ongoing change, models indicate ecosystem transformation under climate projections for the 21st century. These include dynamic global vegetation models (3, 17), species distribution models (18), and comparison of the multivariate climate distance between biomes with that between modern and future climates (20). However, the capacity for assessing the magnitudes of ecosystem transformation under future climate scenarios is limited by the difficulty of evaluating model performance against empirical records, particularly when projected climate states are novel (18, 20).

Paleoecological records of past ecological responses to climate change provide an independent means for gauging the sensitivity of ecosystems to climate change. High-precision time-series studies indicate that local and regional ecosystems can shift rapidly, within years to decades, under abrupt climate change (21–23), but sites with such detailed chronologies are scarce. In this study, we used published reports to compile a global network of radiocarbon-dated paleoecological records of terrestrial vegetation composition and structure since the Last Glacial Maximum (LGM), ~21,000 years before the present (yr B.P.) (24). Most postglacial warming happened 16,000 to 10,000 yr B.P., although it commenced earlier in parts of the Southern Hemisphere (25, 26). Global warming between the LGM and the early Holocene (10,000 yr B.P.) was on the order of 4 to 7°C, with more warming over land than oceans (26, 27). These estimates are roughly comparable to the magnitude of warming that Earth is projected to undergo in the next 100 to 150 years if GHG emissions are not reduced substantially (28). The magnitudes of changes in vegetation composition and structure since the last glacial period (LGP) provide an index of the magnitude of ecosystem change that may be expected under warming of similar magnitude in the coming century (29). Although the rate of projected future global warming is at least an order of magnitude greater than that of the last glacial-to-interglacial transition (26), a glacial-to-modern comparison provides a conservative estimate of the extent of ecological transformation to which the planet will be committed under future climate scenarios.

We reviewed and evaluated paleoecological (pollen and macrofossil) records from 594 sites...
worldwide (fig. S1), all drawn from peer-reviewed published literature, to determine the magnitude of postglacial vegetation change. We adopted an expert-judgment approach in which paleoecologists with relevant regional experience compiled published records (table S1); reviewed records, data, diagrams, and accompanying papers; and inferred the composition and structure of the glacial-age and Holocene vegetation at each site (24). For the purposes of our analyses, we defined the LGP as the interval between 21,000 and 14,000 yr B.P. Although postglacial warming was under way in many regions by 16,000 yr B.P. (25), continental ice sheets were still extensive 14,000 yr B.P., and some climate regimes remained essentially “glacial” in nature, particularly in the Northern Hemisphere (30). Extending the LWP window to 14,000 yr B.P. provides a larger array of records for the assessment, both in glaciated and unglaciated terrains, and renders our analysis more conservative (climatic and vegetation contrasts with the Holocene are likely to decrease between 21,000 and 14,000 yr B.P.).

For each record, experts were asked to classify the magnitudes of compositional change and structural change since the LGP as large, moderate, or low and to provide detailed justification for their judgments (24) (table S2). This placed all the diverse records into a common framework for comparison. For sites that experienced moderate to large ecological change, experts were also asked to assess the role of climate change (large, moderate, or none) in driving the observed vegetation change. For each of these four judgments, experts were asked to state their level of confidence as high, medium, or low. In assessing the role of climate change, experts were asked to focus specifically on whether climate change since the LGP was sufficient to drive the observed changes, acknowledging that other factors (e.g., human activity, postglacial CO₂ increase, and megafaunal dynamics) may have also played important roles. For sites with a long history of human land use, experts used Holocene records predating widespread land clearance as a benchmark for comparison with the LGP records. Our results indicate that the magnitude of past glacial-to-interglacial warming was sufficient at most locations across the globe to drive changes in vegetation composition that were moderate (27% of sites) to large (71%), as well as moderate (28%) to large (67%) structural changes (Fig. 1 and table S3). These changes were particularly evident at mid- to high latitudes in the Northern Hemisphere, as well as in southern South America, tropical and temperate southern Africa, the Indo-Pacific region, Australia, Oceania, and New Zealand (Fig. 1A). Compositional change at most sites in the Neotropics was moderate to large, but three sites showed little or no compositional change, all

---

1Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. 2School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA. 3Department of Biosciences, University of Durham, Durham DH1 3LE, UK. 4Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA. 5National Research Program, U.S. Geological Survey, Reston, VA 20192, USA. 6Geography and Environment, University of Southampton, Southampton SO17 1BJ, UK. 7Department of Geography, University of Utah, Salt Lake City, UT 84112, USA. 8Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA. 9Centre National de la Recherche Scientifique, UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Université Montpellier, Bât. 22, CC3061, Place Eugène Bataillon, 34095 Montpellier, France. 10Aix Marseille Université, Avignon Université, CNRS, IRD, Institut Méditerranéen de Biodiversité et d’Ecologie, 13645 Aix-en-Provence, France. 11Palaeontology, Geobiology and Earth Archives Research Centre (PANGEA), University of New South Wales, Sydney, NSW 2052, Australia. 12State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710071, Shaanxi, China. 13College of Natural Sciences and Mathematics, University of Alaska Fairbanks, Fairbanks, AK 99775, USA. 14Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GL Amsterdam, Netherlands. 15School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK. 16Department of Archaeology and Natural History, Australian National University, Canberra, Australia. 17Department of Botany, University of Wisconsin, Madison, WI 53706, USA. 18Department of Geosciences, Pennsylvania State University, State College, PA 16802, USA. 19School of Earth, Atmosphere, and Environment, Monash University, Melbourne, VIC 3800, Australia. 20Departamento de Ecología, Instituto de Ecología y Biodiversidad (IEB), Pontificia Universidad Católica de Chile, Santiago, Chile. 21Sorbonne Université, CNRS-IRD-MNHN, LCE-AMW-INFOS, Laboratoire 4 Place Jussieu, 75005 Paris, France. 22School of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. 23School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86001, USA. 24North-East Interdisciplinary Scientific Research Institute, Far East Branch Russian Academy of Sciences, Magadan 685000, Russia. 25Landscape Research, Lincoln 7640, New Zealand. 26Department of Environment, York Institute for Tropical Ecosystems, University of York, YO10 5NG, UK. 27Graduate School of Horticulture, Obi University, Matsusaka-shi, Chiba 271-8511, Japan. 28Departamento de Ciencias Ecológicas, ESjoy (CSIC), Universidad de Chile, Santiago, Chile. 29Institute of Geological Sciences, Free University Berlin, D-12249 Berlin, Germany. 30National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, Boulder, CO 80307, USA. 31Yunnan Normal University, Key Laboratory of Plateau Lake Ecology and Global Change, Kunming, Yunnan 650092, China. 32School of Culture, History, and Language, Australian National University, Canberra, Australia. 33Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8062, Japan. 34Department of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, USA. 35Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE), 13354 Aix-en-Provence, France. 36School of Ocean and Earth Science, Tongji University, Shanghai, China. 37Institute of Natural Archaelogy and College of Resource and Environmental Sciences, Hebei Normal University, Shijiazhuang 050024, China. 38School of Earth Science and Engineering, Guangdong Provincial Key Lab of Geodynamics and Geohazards, Sun Yat-Sen University, Guangzhou 510275, China. 39Southwest Climate Adaptation Science Center, U.S. Geological Survey, Tucson, AZ 85720, USA.

*Corresponding author. Email: stjackson@unm.edu
with medium to high confidence (fig. S2). Shifts in vegetation structure were also moderate to large at mid- to high-latitude sites, although a few sites showed low change (Fig. 1B). The Neotropics had nine sites with little or no structural change (Fig. 1B), all with high-confidence assessments (fig. S2). These sites have been occupied by tropical forest ecosystems since the LGM, although most have undergone moderate to large compositional change (31, 32). For nearly all sites that experienced moderate or large ecological change, climate change since the LGP was judged to be sufficient to explain the observed changes with high confidence (table S4). Atmospheric CO₂ concentrations also increased from 190 to 280 parts per million during the deglaciation, interacting with and in some cases modulating ecological responses to climate change. However, CO₂ changes alone cannot account for postglacial vegetation changes (supplementary text).

Independently of the expert-judgment process, we used the estimated anomaly in mean annual temperatures between the LGM and the present (preindustrial) as a proxy for the overall magnitude of climate change since the LGP (24). LGM temperature estimates were derived using an assimilated data-model integration (27). Low-change sites were largely concentrated in regions where the estimated temperature anomaly was relatively small (Fig. 1). To explore this relationship further, we plotted the frequency distribution of the difference between estimated LGM and present-day mean annual temperatures for individual sites in each of the three ecological-response categories. Nearly all sites with low compositional change between the LGP and today are associated with small estimated temperature anomalies (median, 2.4°C), whereas sites with moderate to high compositional change have larger temperature anomalies (Fig. 2A). Results for structural changes are similar, although a greater number of sites with low structural change include larger temperature anomalies (Fig. 2B). This difference is not surprising, because compositional change in vegetation can occur without an accompanying change in vegetation structure (Fig. 1). Europe and eastern North America experienced unusually large temperature changes since the LGM, owing to depressed temperatures near the large ice sheets, and these regions show substantial compositional and structural changes since the LGP. However, results from other parts of the globe indicate that widespread ecosystem changes were driven by much smaller temperature changes (fig. S3). We repeated our analysis using the TraCE-21ka model simulations (33, 34), which yield a lower magnitude of LGM-to-Holocene climate change (35); despite the potential conservative bias, results for compositional and structural changes (fig. S4) were similar to those in Fig. 2. Temperature differences between the LGP and the present were substantially greater for sites with large ecological change than for those with low to moderate change, by both paleoclimate estimates (27, 33) (table S2).

We also used our database of ecological change since the LGM to assess the global distribution of the probabilities of large compositional and structural changes given GHG emission scenarios (representative concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5) (and as simulated by the Community Climate System Model version 5 (CCSM4)) (24, 36). The range of LGM-to-present temperature changes (Fig. 2) overlaps with the range of temperature changes projected for the coming century under these scenarios (Fig. 3A and fig. S5). We quantified the relationship between temperature and ecological change by using a logistic spline regression with ordered categories (37). We fit models for compositional and structural change by using the temperature change since the LGM as the independent predictor variable. In both models, LGM-to-modern temperature change is a significant predictor of ecosystem change (P < 0.001). We then used these models to predict the risk of large change for the future range of projected global temperatures (Fig. 3B) and to map the probability of large change under RCP 2.6 and RCP 8.5 (Fig. 3, C to F) at the end of the 21st century.
structural transformation will have particularly large consequences for ecosystem services (4), including the achievement of nature-based development solutions under the United Nations’ Sustainable Development Goals (44). Structural changes will also influence biodiversity, driving alterations in habitats and resources for species at higher trophic levels. Compositional and structural changes may also induce potentially large changes to carbon sources and sinks, as well as to atmospheric moisture recycling and other climate feedbacks. Our results suggest that impacts on planetary-scale biodiversity, ecological functioning, and ecosystem services will increase substantially with increasing GHG emissions, particularly if warming exceeds that projected by the RCP 2.6 emission scenario (1.5°C).

REFERENCES AND NOTES
24. Materials and methods are available as supplementary materials.

ACKNOWLEDGMENTS
The paper benefited from the thoughtful comments of S. T. Gray and three anonymous reviewers. Funding: This research was supported by the NSF (DEB-1241851, AGS-1743735, and EAR-1530403) and by the Department of the Interior’s Southwest Climate Adaptation Science Center, Research in northeast Siberia was funded by the Russian Academy of Sciences, FEB (126:1-2007), and the Russian Foundation for Fundamental Research (15-05-04215). Author contributions: S.T.J., C.N., and J.T.D. designed the project; all authors collected data; C.N. analyzed data with advice from J.T.O., S.T.J., S.T.D., S.T.J., and J.T.D.; and S.T.J., C.N., and J.T.D. wrote the paper with text contributions in the supplementary materials from B.M.C., M.B.B., M.E.S., J.A.B., B.H., Y.L., and S.J.L. and further contributions from all authors.

COMPETING INTERESTS: The authors declare no competing interests.

Data and materials availability: All data are available in the main text or the supplementary materials.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/content/361/6405/suppl/DC1
Materials and Methods
Supplementary text
Figs. S1 to S8
Tables S1 to S4
References (45-86)
Data S1

27 April 2017; resubmitted 24 April 2018
Accepted 30 July 2018
10.1126/science.aan3560

4 of 4