, WHO, Global tuberculosis report, 2017.

A. I. Zumla, S. H. Gillespie, M. Hoelscher, P. P. Philips, S. T. Cole et al., New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects, Lancet Infect. Dis, vol.14, pp.327-340, 2014.

M. Pai, M. A. Behr, D. Dowdy, K. Dheda, M. Divangahi et al., Nat. Rev. Dis. Primers, vol.2, p.16076, 2016.

K. Andries, P. Verhasselt, J. Guillemont, H. W. Gohlmann, J. M. Neefs et al., A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, vol.307, pp.223-227, 2005.

M. Matsumoto, H. Hashizume, T. Tomishige, M. Kawasaki, H. Tsubouchi et al., OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice, PLoS Med, issue.3, p.466, 2006.

A. H. Diacon, R. Dawson, F. Von-groote-bidlingmaier, G. Symons, A. Venter et al., 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial, Lancet, vol.380, pp.986-993, 2012.

A. A. Velayati, M. R. Masjedi, P. Farnia, P. Tabarsi, J. Ghanavi et al., Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran, Chest, vol.136, pp.420-425, 2009.

C. D. Acosta, A. Dadu, A. Ramsay, and M. Dara, Drug-resistant tuberculosis in Eastern Europe: challenges and ways forward, Public Health Action, vol.4, pp.3-12, 2014.

G. Gunther, Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges, Clin. Med, vol.14, pp.279-285, 2014.

G. Gunther, F. Van-leth, N. Altet, M. Dedicoat, R. Duarte et al., Beyond multidrug-resistant tuberculosis in Europe: a TBNET study, Int. J. Tuberc. Lung Dis, vol.19, pp.1524-1527, 2015.

J. A. Aeschlimann and A. Stempel, Heterocyclic Antituberculous Compounds, US2665279, 1954.

A. E. Wilder and . Smith, The action of phosgene on acid hydrazides to give 1, 3, 4-oxdiazolones of interest in the treatment of tuberculosis, Science, vol.119, p.514, 1954.

A. E. Wilder, H. Smith, and . Brodhage, Biological spectrum of some new tuberculostatic 1,3,4-oxadiazolones with special reference to cross-resistance and rates of emergence of resistance, Nature, vol.192, p.1195, 1961.

A. E. Wilder, H. Smith, G. Brodhage, and . Haukenes, Some tuberculostatic 1,3,4-oxadiazolones(-5) and 1,3,4-oxadiazolthiones(-5). II: biological spectrum in vitro and activity in vivo in relation to resistance emergence, Arzneimittelforschung, vol.12, pp.275-280, 1962.

A. E. Wilder and . Smith, Some Recently Synthesised Tuberculostatic 4-Substituted Oxadiazolones and Oxadiazol-Thiones, VI, Arzneimittel-Forschung, vol.16, pp.1034-1038, 1966.

M. G. Mamolo, D. Zampieri, L. Vio, M. Fermeglia, M. Ferrone et al., Antimycobacterial activity of new 3-substituted 5-(pyridin-4-yl)-3H-1,3,4oxadiazol-2-one and 2-thione derivatives. Preliminary molecular modeling investigations, Bioorg. Med. Chem, vol.13, pp.3797-3809, 2005.

D. Zampieri, M. G. Mamolo, E. Laurini, M. Fermeglia, P. Posocco et al., Antimycobacterial activity of new 3,5-disubstituted 1,3,4-oxadiazol-2(3H)-one derivatives. Molecular modeling investigations, Bioorg. Med. Chem, vol.17, pp.4693-4707, 2009.

A. Bellamine, A. T. Mangla, W. D. Nes, and M. R. Waterman, Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, vol.96, pp.8937-8942, 1999.

D. J. Sheehan, C. A. Hitchcock, and C. M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev, vol.12, pp.40-79, 1999.

K. J. Mclean, A. J. Dunford, R. Neeli, M. D. Driscoll, and A. W. Munro, Structure, function and drug targeting in Mycobacterium tuberculosis cytochrome P450 systems, Arch. Biochem. Biophys, vol.464, pp.228-240, 2007.

Y. Ben-ali, H. Chahinian, S. Petry, G. Muller, R. Lebrun et al., Use of an inhibitor to identify members of the hormone-sensitive lipase family, Biochemistry, vol.45, pp.14183-14191, 2006.

Y. Ben-ali, R. Verger, F. Carrière, S. Petry, G. Muller et al., The molecular mechanism of human hormone-sensitive lipase inhibition by substituted 3-phenyl5-alkoxy-1,3,4-oxadiazol-2-ones, Biochimie, vol.94, pp.137-145, 2012.

V. Delorme, S. V. Diomandé, L. Dedieu, J. Cavalier, F. Carrière et al., MmPPOX Inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormone-sensitive lipase family and alters mycobacterial growth, PLoS One, vol.7, p.46493, 2012.

B. Borgström, Mode of action of tetrahydrolipstatin: a derivative of the naturally occuring lipase inhibitor lipstatin, Biochim. Biophys. Acta, vol.962, pp.308-316, 1988.

P. Hadváry, W. Sidler, W. Meister, W. Vetter, and H. Wolfer, The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase, J. Biol. Chem, vol.266, pp.2021-2027, 1991.

A. Bénarouche, V. Point, F. Carrière, and J. Cavalier, Using the reversible inhibition of gastric lipase by Orlistat for investigating simultaneously lipase adsorption and substrate hydrolysis at the lipid-water interface, Biochimie, vol.101, pp.221-231, 2014.

V. Point, A. Bénarouche, J. Zarillo, A. Guy, R. Magnez et al., Slowing down fat digestion and absorption by an oxadiazolone inhibitor targeting selectively gastric lipolysis, Eur. J. Med. Chem, vol.123, pp.834-848, 2016.
DOI : 10.1016/j.ejmech.2016.08.009

URL : https://hal.archives-ouvertes.fr/hal-01466841

V. K. Sambandamurthy, S. C. Derrick, T. Hsu, B. Chen, M. H. Larsen et al., Mycobacterium tuberculosis DeltaRD1 DeltapanCD: a safe and limited replicating mutant strain that protects immunocompetent and immunocompromised mice against experimental tuberculosis, Vaccine, vol.24, pp.6309-6320, 2006.
DOI : 10.1016/j.vaccine.2006.05.097

J. C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings et al., Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis, Antimicrob. Agents Chemother, vol.46, pp.2720-2722, 2002.

J. Rybniker, A. Vocat, C. Sala, P. Busso, F. Pojer et al., Lansoprazole is an antituberculous prodrug targeting cytochrome bc1, Nat. Commun, vol.6, p.7659, 2015.
DOI : 10.1038/ncomms8659

URL : http://www.nature.com/articles/ncomms8659.pdf

P. C. Nguyen, V. Delorme, A. Bénarouche, B. P. Martin, R. Paudel et al., Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis, Sci. Rep, vol.7, p.11751, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791688

P. C. Nguyen, A. Madani, P. Santucci, B. P. Martin, R. R. Paudel et al., Cyclophostin and Cyclipostins analogs, new promising molecules to treat mycobacterial-related diseases, Int. J. Antimicrob. Agents, vol.51, pp.651-654, 2018.

R. J. Wallace, D. R. Nash, L. C. Steele, and V. Steingrube, Susceptibility testing of slowly growing mycobacteria by a microdilution MIC method with 7H9 broth, J. Clin. Microbiol, vol.24, pp.976-981, 1986.

A. Aubry, V. Jarlier, S. Escolano, C. Truffot-pernot, and E. Cambau, Antibiotic susceptibility pattern of Mycobacterium marinum, Antimicrob. Agents Chemother, vol.44, pp.3133-3136, 2000.
DOI : 10.1128/aac.44.11.3133-3136.2000

URL : https://aac.asm.org/content/44/11/3133.full.pdf

N. Ritz, M. Tebruegge, T. G. Connell, A. Sievers, R. Robins-browne et al., Susceptibility of Mycobacterium bovis BCG vaccine strains to antituberculous antibiotics, Antimicrob. Agents Chemother, vol.53, pp.316-318, 2009.
DOI : 10.1128/aac.01302-08

URL : https://aac.asm.org/content/53/1/316.full.pdf

T. Christophe, M. Jackson, H. K. Jeon, D. Fenistein, M. Contreras-dominguez et al., High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors, PLoS Pathog, vol.5, p.1000645, 2009.
DOI : 10.1371/journal.ppat.1000645

URL : https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.1000645&type=printable

T. Christophe, F. Ewann, H. K. Jeon, J. Cechetto, and P. Brodin, High-content imaging of Mycobacterium tuberculosis-infected macrophages: an in vitro model for tuberculosis drug discovery, Future Med. Chem, vol.2, pp.1283-1293, 2010.

P. Brodin and T. Christophe, High-content screening in infectious diseases, Curr. Opin. Chem. Biol, vol.15, pp.534-539, 2011.
DOI : 10.1016/j.cbpa.2011.05.023

M. Flipo, M. Desroses, N. Lecat-guillet, B. Dirie, X. Carette et al., Ethionamide boosters: synthesis, biological activity, and structure-activity relationships of a series of 1,2,4-oxadiazole EthR inhibitors, J. Med. Chem, vol.54, pp.2994-3010, 2011.

J. Neres, R. C. Hartkoorn, L. R. Chiarelli, R. Gadupudi, M. R. Pasca et al., 2-Carboxyquinoxalines Kill Mycobacterium tuberculosis through Noncovalent Inhibition of DprE1, ACS Chem. Biol, vol.10, pp.705-714, 2015.
DOI : 10.1021/cb5007163

M. S. Ravindran, S. P. Rao, X. Cheng, A. Shukla, A. Cazenave-gassiot et al., Targeting lipid esterases in mycobacteria grown under different physiological conditions using activity-based profiling with tetrahydrolipstatin (THL), Mol. Cell. Proteomics, vol.13, pp.435-448, 2014.
DOI : 10.1074/mcp.m113.029942

URL : http://www.mcponline.org/content/13/2/435.full.pdf

J. Lehmann, J. Vomacka, K. Esser, M. Nodwell, K. Kolbe et al., Human lysosomal acid lipase inhibitor lalistat impairs Mycobacterium tuberculosis growth by targeting bacterial hydrolases, MedChemComm, vol.7, pp.1797-1801, 2016.
DOI : 10.1039/c6md00231e

URL : https://pubs.rsc.org/en/content/articlepdf/2016/md/c6md00231e

C. Ortega, L. N. Anderson, A. Frando, N. C. Sadler, R. W. Brown et al., Systematic survey of serine hydrolase activity in Mycobacterium tuberculosis defines changes associated with persistence, Cell Chem. Biol, vol.23, pp.290-298, 2016.

K. R. Tallman, S. R. Levine, and K. E. Beatty, Small molecule probes reveal esterases with persistent activity in dormant and reactivating Mycobacterium tuberculosis, ACS Infect. Dis, vol.2, pp.936-944, 2016.

S. Canaan, D. Maurin, H. Chahinian, B. Pouilly, C. Durousseau et al., Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family, Eur. J. Biochem, vol.271, pp.3953-3961, 2004.

G. Singh, S. Arya, D. Narang, D. Jadeja, U. D. Gupta et al., Characterization of an acid inducible lipase Rv3203 from Mycobacterium tuberculosis H37Rv, Mol. Biol. Rep, vol.41, pp.285-296, 2014.

N. P. West, F. M. Chow, E. J. Randall, J. Wu, J. Chen et al., Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification, FASEB J, vol.23, pp.1694-1704, 2009.

K. Côtes, R. Dhouib, I. Douchet, H. Chahinian, A. D. Caro et al., Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids, Biochem J, vol.408, pp.417-427, 2007.

J. C. Sacchettini and D. R. Ronning, The mycobacterial antigens 85 complex-from structure to function: response, Trends Microbiol, vol.8, p.441, 2000.

J. T. Belisle, V. D. Vissa, T. Sievert, K. Takayama, P. J. Brennan et al., Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis, Science, vol.276, pp.1420-1422, 1997.

L. Alibaud, Y. Rombouts, X. Trivelli, A. Burguiere, S. L. Cirillo et al., A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos, Mol. Microbiol, vol.80, pp.919-934, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641589

S. Lun and W. R. Bishai, Characterization of a novel cell wall-anchored protein with carboxylesterase activity required for virulence in Mycobacterium tuberculosis, J. Biol. Chem, vol.282, pp.18348-18356, 2007.

R. A. Slayden and C. E. Barry, The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis, Tuberculosis, pp.149-160, 2002.

G. Johnson, The alpha/beta hydrolase fold proteins of Mycobacterium tuberculosis, with reference to their contribution to virulence, Curr. Protein Pept. Sci, vol.18, pp.190-210, 2017.

M. Schué, D. Maurin, R. Dhouib, J. C. Bakala-n'goma, V. Delorme et al., Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function, FASEB J, vol.24, pp.1893-1903, 2010.

V. Point, R. K. Malla, S. Diomande, B. P. Martin, V. Delorme et al., Synthesis and kinetic evaluation of Cyclophostin and Cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases, J. Med. Chem, vol.55, pp.10204-10219, 2012.

C. Rens, F. Laval, M. Daffe, O. Denis, R. Frita et al., Effects of lipid-lowering drugs on vancomycin susceptibility of mycobacteria, Antimicrob. Agents Chemother, vol.60, pp.6193-6199, 2016.

B. Brust, M. Lecoufle, E. Tuaillon, L. Dedieu, S. Canaan et al., Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis, PLoS One, vol.6, p.25078, 2011.

L. Dedieu, C. Serveau-avesque, L. Kremer, and S. Canaan, Mycobacterial lipolytic enzymes: a gold mine for tuberculosis research, Biochimie, vol.95, pp.66-73, 2013.

C. Deb, J. Daniel, T. Sirakova, B. Abomoelak, V. Dubey et al., A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis, J. Biol. Chem, vol.281, pp.3866-3875, 2006.

R. Dhouib, A. Ducret, P. Hubert, F. Carriere, S. Dukan et al., Watching intracellular lipolysis in mycobacteria using time lapse fluorescence microscopy, Biochim. Biophys. Acta, pp.234-241, 1811.

O. Neyrolles, R. Hernández-pando, F. Pietri-rouxel, P. Fornès, L. Tailleux et al., Is adipose tissue a place for Mycobacterium tuberculosis persistence?, PLoS One, vol.1, p.43, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00130276

P. Peyron, J. Vaubourgeix, Y. Poquet, F. Levillain, C. Botanch et al., Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence, PLoS Pathog, vol.4, p.1000204, 2008.

P. Santucci, F. Bouzid, N. Smichi, I. Poncin, L. Kremer et al., Experimental models of foamy macrophages and approaches for dissecting the mechanisms of lipid accumulation and consumption during dormancy and reactivation of tuberculosis, Front. Cell. Infect. Microbiol, vol.6, p.122, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455789

P. Santucci, S. Diomandé, I. Poncin, L. Alibaud, A. Viljoen et al., Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages, Infect. Immun, 2018.

V. Point, K. V. Kumar, S. Marc, V. Delorme, G. Parsiegla et al., Analysis of the discriminative inhibition of mammalian digestive lipases by 3-phenyl substituted 1,3,4-oxadiazol-2(3H)-ones, Eur. J. Med. Chem, vol.58, pp.452-463, 2012.

K. Pethe, P. Bifani, J. Jang, S. Kang, S. Park et al., Nat. Med, vol.19, pp.1157-1160, 2013.

A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal Chem, vol.68, pp.850-858, 1996.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol, vol.26, pp.1367-1372, 2008.

J. A. Vizcaino, E. W. Deutsch, R. Wang, A. Csordas, F. Reisinger et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat. Biotechnol, vol.32, pp.223-226, 2014.

A. Viljoen, M. Richard, P. C. Nguyen, P. Fourquet, L. Camoin et al., Cyclipostins and Cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo, J. Biol. Chem, vol.293, pp.2755-2769, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770061