U. B. Kaupp and R. Seifert, Cyclic nucleotide-gated ion channels, Physiol. Rev, vol.82, pp.769-824, 2002.

K. B. Craven and W. N. Zagotta, CNG and HCN channels: two peas, one pod, Annu. Rev. Physiol, vol.68, pp.375-401, 2006.

R. B. Robinson and S. A. Siegelbaum, Hyperpolarization-activated cation currents: from molecules to physiological function, Annu. Rev. Physiol, vol.65, pp.453-480, 2003.

L. Eron, R. Arditti, G. Zubay, S. Connaway, and J. R. Beckwith, An adenosine 3':5'-cyclic monophosphate-binding protein that acts on the transcription process, Proc. Natl Acad. Sci. USA, vol.68, pp.215-218, 1971.

S. S. Taylor and A. P. Kornev, Protein kinases: evolution of dynamic regulatory proteins, Trends Biochem. Sci, vol.36, pp.65-77, 2011.

J. C. Difrancesco and D. Difrancesco, Dysfunctional HCN ion channels in neurological diseases, Front. Cell. Neurosci, vol.6, p.174, 2015.

Y. Cao, J. Pang, and P. Zhou, HCN channel as therapeutic targets for heart failure and pain, Curr. Top. Med. Chem, vol.16, pp.1855-1861, 2016.

C. Schön, M. Biel, and S. Michalakis, Gene replacement therapy for retinal CNG channelopathies, Mol. Genet. Genom, vol.288, pp.459-467, 2013.

S. Pifferi, A. Boccaccio, and A. Menini, Cyclic nucleotide-gated ion channels in sensory transduction, FEBS Lett, vol.580, pp.2853-2859, 2006.

F. H. Yu, V. Yarov-yarovoy, G. A. Gutman, and W. A. Catterall, Overview of molecular relationships in the voltage-gated ion channel superfamily, Pharmacol. Rev, vol.57, pp.387-395, 2005.

P. Paoletti, E. C. Young, and S. A. Siegelbaum, C-Linker of cyclic nucleotidegated channels controls coupling of ligand binding to channel gating, J. Gen. Physiol, vol.113, pp.17-34, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00139997

J. P. Johnson and W. N. Zagotta, Rotational movement during cyclic nucleotide-gated channel opening, Nature, vol.412, pp.917-921, 2001.

M. Mazzolini, A. Marchesi, A. Giorgetti, and V. Torre, Gating in CNGA1 channels, Pflug. Arch, vol.459, pp.547-555, 2010.

A. Marchesi, M. Mazzolini, and V. Torre, Gating of cyclic nucleotide-gated channels is voltage dependent, Nat. Commun, vol.3, p.973, 2012.

Z. M. James and W. N. Zagotta, Structural insights into the mechanisms of CNBD channel function, J. Gen. Physiol, vol.150, pp.225-244, 2018.

C. Lee and R. Mackinnon, Structures of the human HCN1 hyperpolarization-activated channel, Cell, vol.168, p.11, 2017.

M. Li, Structure of a eukaryotic cyclic-nucleotide-gated channel, Nature, vol.542, pp.60-65, 2017.

Z. M. James, CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel, Proc. Natl Acad. Sci. USA, vol.114, pp.4430-4435, 2017.

S. Chen, J. Wang, and S. A. Siegelbaum, Properties of hyperpolarizationactivated pacemaker current defined by coassembly of Hcn1 and Hcn2 subunits and basal modulation by cyclic nucleotide, J. Gen. Physiol, vol.117, pp.491-504, 2001.

M. Brams, J. Kusch, R. Spurny, K. Benndorf, and C. Ulens, Family of prokaryote cyclic nucleotide-modulated ion channels, Proc. Natl Acad. Sci. USA, vol.111, pp.7855-7860, 2014.

P. A. Schmidpeter, X. Gao, V. Uphadyay, J. Rheinberger, and C. M. Nimigean, Ligand binding and gating of purified SthK, a bacterial cyclic nucleotidegated ion channel, J. Gen. Physiol, vol.150, pp.821-834, 2018.

J. Rheinberger, X. Gao, P. A. Schmidpeter, and C. M. Nimigean, Ligand discrimination and gating in cyclic nucleotide-gated ion channels from apo and partial agonist-bound cryo-EM structures, vol.7, p.39775, 2018.

T. Ando, A high-speed atomic force microscope for studying biological macromolecules, Proc. Natl Acad. Sci. USA, vol.98, pp.12468-12472, 2001.

N. Kodera, D. Yamamoto, R. Ishikawa, and T. Ando, Video imaging of walking myosin V by high-speed atomic force microscopy, Nature, vol.468, pp.72-76, 2010.

I. Casuso, Characterization of the motion of membrane proteins using high-speed atomic force microscopy, Nat. Nanotechnol, vol.7, pp.525-529, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-01363192

N. Chiaruttini, Relaxation of loaded ESCRT-III spiral springs drives membrane deformation, Cell, vol.163, pp.866-879, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01238262

A. Miyagi, C. Chipot, M. Rangl, and S. Scheuring, High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale, Nat. Nanotechnol, vol.11, pp.783-790, 2016.

M. Rangl, Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels, Nat. Commun, vol.7, p.12789, 2016.

T. Ando, T. Uchihashi, and S. Scheuring, Filming biomolecular processes by high-speed atomic force microscopy, Chem. Rev, vol.114, pp.3120-3188, 2014.

A. D. Schenk, The 4.5Å structure of human AQP2, J. Mol. Biol, vol.350, pp.278-289, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024583

S. A. Mari, Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains, Proc. Natl Acad. Sci, vol.108, pp.20802-20807, 2011.

J. Kowal, Ligand-induced structural changes in the cyclic nucleotidemodulated potassium channel MloK1, Nat. Commun, vol.5, p.3106, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01356847

W. N. Zagotta, Structural basis for modulation and agonist specificity of HCN pacemaker channels, Nature, vol.425, pp.200-205, 2003.

M. Lolicato, Tetramerization dynamics of C-terminal domain underlies isoform-specific cAMP gating in hyperpolarization-activated cyclic nucleotide-gated channels, J. Biol. Chem, vol.286, pp.44811-44820, 2011.

M. Mazzolini, The gating mechanism in cyclic nucleotide-gated ion channels, Sci. Rep, vol.8, p.45, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871327

K. B. Craven, N. B. Olivier, and W. N. Zagotta, C-terminal movement during gating in cyclic nucleotide-modulated channels, J. Biol. Chem, vol.283, pp.14728-14738, 2008.
DOI : 10.1074/jbc.m710463200

URL : http://www.jbc.org/content/283/21/14728.full.pdf

Y. Jiang, The open pore conformation of potassium channels, Nature, vol.417, pp.523-526, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02150141

R. K. Hite, Cryo-electron microscopy structure of the Slo2.2 Na (+)-activated K(+) channel, Nature, vol.527, pp.198-203, 2015.

S. Maity, Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy, Nat. Commun, vol.6, p.7093, 2015.

C. Y. Tang and D. M. Papazian, Transfer of voltage independence from a rat olfactory channel to the Drosophila ether-à-go-go K+ channel, J. Gen. Physiol, vol.109, pp.301-311, 1997.

Y. Xu, Y. Ramu, and Z. Lu, A shaker K+ channel with a miniature engineered voltage sensor, Cell, vol.142, pp.580-589, 2010.

J. Pei, B. Kim, and N. V. Grishin, PROMALS3D: a tool for multiple protein sequence and structure alignments, Nucleic Acids Res, vol.36, pp.2295-2300, 2008.
DOI : 10.1093/nar/gkn072

URL : https://academic.oup.com/nar/article-pdf/36/7/2295/16751781/gkn072.pdf

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol, vol.52, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

URL : https://academic.oup.com/sysbio/article-pdf/52/5/696/19503129/52-5-696.pdf

I. Letunic and P. Bork, Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees, Nucleic Acids Res, vol.44, pp.242-245, 2016.

B. Zadek and C. M. Nimigean, Calcium-dependent gating of MthK, a prokaryotic potassium channel, J. Gen. Physiol, vol.127, pp.673-685, 2006.

A. N. Thompson, D. J. Posson, P. V. Parsa, and C. M. Nimigean, Molecular mechanism of pH sensing in KcsA potassium channels, Proc. Natl Acad. Sci. USA, vol.105, pp.6900-6905, 2008.

T. Y. Chen and C. Miller, Nonequilibrium gating and voltage dependence of the ClC-0 Cl-channel, J. Gen. Physiol, vol.108, pp.237-250, 1996.

M. Husain, T. Boudier, P. Paul-gilloteaux, I. Casuso, and S. Scheuring, Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series, J. Mol. Recognit, vol.25, pp.292-298, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-01363229

P. Fechner, Structural information, resolution, and noise in highresolution atomic force microscopy topographs, Biophys. J, vol.96, pp.3822-3831, 2009.
DOI : 10.1016/j.bpj.2009.02.011

URL : https://doi.org/10.1016/j.bpj.2009.02.011

S. Scheuring, Structural models of the supramolecular organization of AQP0 and connexons in junctional microdomains, J. Struct. Biol, vol.160, pp.385-394, 2007.

R. A. and J. R. , wrote the manuscript with input from all authors