Regulation of σ factors by conserved partner switches controlled by divergent signalling systems

Sophie Bouillet, Dallel Arabet, Cecile Jourlin-Castelli, Vincent Méjean, Chantal Iobbi-Nivol

To cite this version:
Sophie Bouillet, Dallel Arabet, Cecile Jourlin-Castelli, Vincent Méjean, Chantal Iobbi-Nivol. Regulation of σ factors by conserved partner switches controlled by divergent signalling systems. Environmental Microbiology Reports, Wiley, 2018, 10 (2), pp.127 - 139. 10.1111/1758-2229.12620. hal-01890037

HAL Id: hal-01890037
https://hal-amu.archives-ouvertes.fr/hal-01890037
Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Regulation of σ factors by conserved partner switches controlled by divergent signaling systems

Sophie Bouillet*, Dallel Arabet, Cécile Jourlin-Castelli, Vincent Méjean and Chantal Iobbi-Nivol

From Aix-Marseille Univ, CNRS, BIP UMR7281, 13402 Marseille, France.

Running title: Many sensing roads lead to partner switches.

*To whom correspondence should be addressed: Sophie Bouillet, BIP-IMM, CNRS, 31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France, E-mail: bouillet.sophie@outlook.fr

Keywords: Environmental signal and stress responses, gene regulation, anti-sigma factor, chemosensory systems, phylogeny.

Abstract

Partner-Switching Systems (PSS) are widespread regulatory systems, each comprising a kinase-anti-σ, a phosphorylatable anti-σ antagonist and a phosphatase modules. The anti-σ domain quickly sequesters or delivers the target σ factor according to the phosphorylation state of the anti-σ antagonist induced by environmental signals. The PSS components are proteins alone or merged to other domains probably to adapt to the input signals. PSS are involved in major cellular processes including stress response, sporulation, biofilm formation and pathogenesis. Surprisingly, the target σ factors are often unknown and the sensing modules acting upstream from the PSS diverge according to the bacterial species. Indeed, they belong to either two-component systems or complex pathways as the stressosome or Chemosensory Systems (CS).
Based on a phylogenetic analysis, we propose that the sensing module in Gram-negative bacteria is often a CS.

Introduction

Bacteria have to face constantly many environmental changes in their ecological niches. Their ability to rewire rapidly the expression of genes involved in the response to these alterations is crucial for their survival and is mediated by the use of different alternative σ factors. The σ factors target the core RNA polymerase to the promoter of genes required to adapt to new cell surroundings. All bacteria possess a primary housekeeping σ factor (σ\(^70\)) that insures the transcription of the majority of genes, but most bacteria own additional σ factors that coordinate the transcription of many genes involved in response and adaptation of bacteria to changing environmental or cellular conditions. The number of these alternative σ factors varies depending on the lifestyle of the bacteria (Österberg *et al.*, 2011).

Except for *Escherichia coli* σ\(^{54}\) and homologs, all σ factors belong to the σ\(^70\) family, divided itself into four subfamilies based on phylogenetic and structural properties (Paget and Helmann, 2003; Helmann, 2011). The group 1 of σ\(^70\) family is composed of the whole housekeeping σ factors, σ\(^{70}\) also called σ\(^A\) in Gram-positive bacteria. The group 2 gathers σ factors that resemble to that of group 1 except that they are not essential in laboratory conditions, as σ\(^5\) factor involved in the General Stress Response (GSR) of proteobacteria (Helmann, 2011; Battesti *et al.*, 2011). The group 3 contains more diverse σ factors, which have roles in various cellular processes as σ\(^{32}\) that regulates genes involved in response to heat shock, σ\(^{28}\) in flagella synthesis and also σ\(^{E}\), σ\(^{F}\), σ\(^{G}\), σ\(^{K}\), of *Bacillus subtilis* that control different stages of sporulation. The group 4 contains very diverse σ factors called σ\(^{ECF}\) (for ExtraCytoplasmic Function) that have been classified into at least 56 subgroups (Staroń *et al.*, 2009; Huang *et al.*, 2015; Sineva *et al.*, 2017).

Sigma factors play crucial roles to conduct the cellular processes and in turn they have to be tightly regulated. In many cases, sigma factors are controlled at several levels, from transcription to post-translation. At the protein level, we can distinguish three main modes of regulation, the proteolysis of the sigma factor as for σ\(^5\) in *E. coli* (Becker *et al.*, 1999; Hengge, 2009, 2011;
Battesti et al., 2011); the cleavage of the σ factor from an inactive to an active form, including pro-σE and pro-σK in B. subtilis (Hilbert and Piggot, 2004; Higgins and Dworkin, 2012; Fimlaid and Shen, 2015) and the inactivation of the sigma factor activity by an anti-σ factor (Hughes and Mathee, 1998; Helmann, 1999; Österberg et al., 2011; Feklístov et al., 2014; Paget, 2015). The anti-σ factors sequester their target σ factor, disabling it to interact with the core RNAP and thus to transcribe genes of its regulon (Campbell et al., 2002; Sorenson et al., 2004; Feklístov et al., 2014). In doing so, anti-σ factors could protect their σ factor partner from proteolysis (Barembruch and Hengge, 2007; Mao et al., 2013, 2014; Bouillet et al., 2017). Thus, anti-σ factors enable the cell to maintain a pool of σ factor molecules that can be rapidly released to act without de novo synthesis when suddenly required. Most of the σECF are regulated by anti-σ factors and are usually co-transcribed into the same transcriptional unit to keep a 1:1 stoichiometry of the two proteins (Brooks and Buchanan, 2008; Campagne et al., 2015). The release of the σ factor is also precisely driven to ensure the transcription of its regulon in response to specific signals. Different strategies are thus employed including cell-surface signaling (regulation of σ24 also called σE in E. coli) (Brooks and Buchanan, 2008; Ho and Ellermeier, 2012), the secretion of the anti-σ factors (FliA/FlgM in E. coli) (Hughes et al., 1993; Kutsukake, 1994; Smith and Hoover, 2009), the direct sensing of redox state by cysteine residues of the anti-σ factors (RsrA/σR in Streptomyces coelicolor) (Ilbert et al., 2006; Jung et al., 2011) as well as the involvement of an additional protein called anti-σ factor antagonist in a mechanism known as the partner-switching system (PSS).

Partner-switching systems

The term “partner-switch” has been defined by Alper and colleagues in 1994 to describe the mechanism that regulates σF, crucial in the sporulation process of B. subtilis (Alper et al., 1994). The nature of the PSS components as well as their function is a common feature among typical PSS. Indeed, PSS are made up with an anti-σ factor having a serine kinase activity (HATPase domain), a phosphorylatable STAS anti-σ antagonist, a PP2C serine phosphatase and a target σ factor (Alper et al., 1994; Mittenhuber, 2002). Anti-σ factors are constituted of a dimerization
interface and of a HATPase domain. The latter harbors conserved motifs for phosphorylation and is found in many kinase families (Dutta and Inouye, 2000). STAS stands for Sulfate Transporter and Anti-Sigma antagonist and proteins containing this domain play a role in either of these two processes and are phosphorylatable on a specific serine residue (Sharma et al., 2011). The PP2C domain characterizes a family of serine/threonine phosphatases that need metallic ion for their activity (Shi, 2009; Pereira et al., 2011; Bradshaw et al., 2017).

In a partner-switching mechanism, the anti-σ factor binds to its target σ factor disabling it to recruit the core RNAP. The release of the σ factor is mediated by the anti-σ factor antagonist, also called anti-anti-σ factor. Indeed, when no specific signal is transduced to the regulatory system, the anti-σ factor binds to the σ factor and phosphorylates its partner the anti-σ factor antagonist. When the specific signal arises, the PP2C-type phosphatase is activated and dephosphorylates the anti-σ factor antagonist that becomes thus efficient to interact with the anti-σ, leading to the release of the σ factor by a competition effect. Anti-σ factors have usually a better affinity for the unphosphorylated form of the anti-anti-σ factor than for the σ protein allowing the binding of the σ factor only when the anti-σ factor antagonist is phosphorylated but not when it is dephosphorylated (Duncan et al., 1996; Masuda et al., 2004; Bouillet et al., 2016).

A 3D-structure of the anti-σ factor SpoIIAB bound to its partners showed that two monomers of anti-σ factors interact with only one monomer of σ\(^\#\) factor but with two monomers of anti-σ factor antagonist SpoIIAA (Campbell et al., 2002; Masuda et al., 2004). This mode of binding is probably similar for other PSS. Moreover, anti-σ proteins contain a dimerization interface suggesting their ability to dimerize. However, additional biochemical characterization of the interactions of the PSS partners is needed to confirm their mode of action.

Numerous PSS have been discovered in many bacteria including Gram-negative bacteria whereas they were initially thought to be restricted to Gram-positive bacteria (Shi et al., 1999; Mittenhuber, 2002; Kozak et al., 2005; Morris and Visick, 2010; Houot et al., 2012; Morris and Visick, 2013b; Eshghi et al., 2014; Mercer and Lang, 2014; Lambert et al., 2015; Thompson et al., 2015; Bouillet et al., 2016; Gebhardt and Shuman, 2017). Although PSS comprises four
components (an anti-σ factor, an anti-σ factor antagonist, a phosphatase and a σ factor), the
domain organization of the partners is highly diversified as depicted in Figure 1. While the anti-σ
antagonist usually remains as a one-domain protein, the anti-σ factor can be a domain of a
complex protein. Indeed, it can be associated with other domains including receiver domain of
typical response regulator, PP2C-type phosphatase domain or unknown function domain.
Interestingly, the phosphatase is usually associated with a signaling domain such as receiver,
HAMP or detection domains. These data show that PSS have evolved probably according to the
detected stresses and to the target σ factor.

In conclusion, although the core domain composition is conserved, the domain organization
frequently varies and, consequently, PSS often comprise additional domains (Figure 1)
(Mittenhuber, 2002; Galperin, 2006).

Nevertheless, the presence of PSS encoded within bacterial genomes remains yet poorly studied.
Phylogenetic analyses of PSS are thus needed to evaluate how widespread are these systems in
particular in Gram-negative bacteria. In fact, the presence of HATPase and STAS domains in
other proteins and complex domain organizations make difficult the characterization of anti-σ
and anti-anti-σ factors in bacteria by using basic bioinformatics.

However, anti-σ factor antagonist and phosphatase homologs have been found in Gram-positive
bacteria, as well as cyanobacteria, *Deinococcus* species and proteobacteria including
Pseudomonas, Vibrio and *Shewanella* species (Mittenhuber, 2002). For example, *B. subtilis* and *B.
cereus* possess 16 σ factors and two known PSS targeting σ^F^ and σ^B^, *M. tuberculosis* harbors 13 σ
factors, one of which is subjected to two PSS (σ^F^ is submitted to UsfX/RsfAB and to Rv1364c
regulation). In *S. oneidensis*, 10 σ factors are present with a known and a putative PSS.
Surprisingly, some species including *E. coli* do not seem to possess PSS. In contrast, the Gram-
positive bacterium *S. coelicolor* is one of the organisms that contain the highest number of σ
factors (60 to 65) and its chromosome has been predicted to encode many PSS partners with 45
anti-σ factors, 18 anti-anti-σ factors and 44 PP2C proteins (Bentley *et al.*, 2002; Mittenhuber,
2002; Martínez *et al.*, 2009). Among them, few have been identified but their study appears
complicated because of cross-talks between several PSS, and anti-σ factor antagonists could have more than one associated anti-σ factor. If we consider that each anti-σ factor antagonist is the output protein from distinct sensory modules, this suggests that the release and thus the activation of the targeted σ factor might be induced by many transducing pathways in response to various signals.

Role of the Partner-switching systems

The role of PSS is to control the availability of specific σ factors. However, various PSS have been discovered in many bacteria but the targeted σ factor has not been found in some cases (Figure 1).

PSS signal transduction pathways seem to be implicated in various major cellular processes including the control of type III secretion system synthesis, virulence, chemotaxis, biofilm formation, exoprotein production, stress responses and also metabolism (Shi *et al.*, 1999; Mattoo *et al.*, 2004; Kozak *et al.*, 2005; Bindi *et al.*, 2010; Bhuwan *et al.*, 2012; Houot *et al.*, 2012; Morris and Visick, 2013b, 2013a; Eshghi *et al.*, 2014; Mercer and Lang, 2014; Lambert *et al.*, 2015; Bouillet *et al.*, 2016; Gebhardt and Shuman, 2017). For instance, the spore formation of *B. subtilis* is a complex multi-step mechanism under the control of many regulators (Higgins and Dworkin, 2012; Fimlaid and Shen, 2015). Notably, four main σ factors act successively during the sporulation process. Each of them is thus tightly regulated but has to be also quickly freed to make sure that all genes are correctly expressed in time. σF is active during the first stage of sporulation only in the forespore compartment. The anti-σ factor SpoIAB interacts with σF disabling it to recruit the core RNAP. The release of σF is permitted by the anti-σ factor antagonist SpoIIA. When no signal is transduced to the regulatory system, SpoIAB binds to σF and also phosphorylates SpoIIA. When a signal is launched, the PP2C-type phosphatase SpoIIE, which is a membrane-anchored protein that perceives the signal dephosphorylates specifically SpoIIA. The anti-σ antagonist becomes thus efficient to interact with SpoIAB, leading to the release of σF (Diederich *et al.*, 1994; Duncan *et al.*, 1996; Magnin *et al.*, 1997; Campbell *et al.*, 2002; Masuda *et al.*, 2004; Levdirov *et al.*, 2012).
The Rsb partner-switching system regulating the availability of the σ^B factor of Bacillales is another PSS that has been extensively studied. σ^B, the general stress response (GSR) σ factor, is inhibited during growth conditions without stress by the anti-σ factor RsbW and σ^B becomes active during stress conditions due to the binding of the dephosphorylated anti-σ factor antagonist RsbV on RsbW (Figures 1 and 2) (Price, 2011).

Beside Gram-positive bacteria PSS models, it has been recently shown in Shewanella oneidensis, an aquatic bacterium from the γ-proteobacteria class, σ^S, the GSR-σ factor, is post-translationally regulated by a PSS (Figures 1 and 2E). This system is composed of the two main proteins CrsA and CrsR, an anti-σ factor antagonist and a three-domain response regulator, respectively. CrsR contains a N-terminal receiver, a central PP2C and a C-terminal HATPase domains. The latter is able to phosphorylate efficiently CrsA whereas the phosphatase domain dephosphorylates it. In addition, direct interactions of CrsR-CrsA and of CrsR-σ^S combined with in vivo data have revealed that σ^S is the target of the PSS. The CrsRA-σ^S is the first system that links GSR regulation to PSS in a γ-proteobacterium as it is the case in many other bacterial species (Bouillet et al., 2016, 2017).

In P. aeruginosa, the PSS protein HsbR comprises a receiver, a PP2C phosphatase and a HATPase domains. It has been proposed that the last domain could constitute a simple kinase and not an anti-σ factor (Figure 1). The anti-σ factor antagonist HsbA can bind to the anti-σ factor FlgM, inducing the release of the σ factor FliA (or σ^28) (Bhuwan et al., 2012). Furthermore, HsbA is subjected to phosphorylation control by HsbR that, consequently, modulates the activity of HsbA. Contrarily to typical PSS, HsbA acts thus downstream HsbR. This system controls swimming motility through the regulation of the flagella synthesis mediated by FliA. Furthermore, HsbA interacts with the diguanylate cyclase HsbD stimulating therefore the c-di-GMP production (Valentini et al., 2016). This original partner-switch has thus crucial functional implications in both motility control and biofilm development.

The Syp system formed by SypE and SypA of Vibrio fisheri as well as the Btr system composed of BtrW and BtrV of Bordetella pertussis have important roles in biofilm formation and
pathogenesis through type III secretion system control, respectively (Figure 1). The target σ factor and the mechanism of action have not been unraveled. Interestingly, as for HsbR of *P. aeruginosa*, the HATPase domains of SypE and RsbW could act solely as a kinase and not as an anti-σ factor (Kozak et al., 2005; Morris and Visick, 2013b, 2013a).

Usually, PSS regulate the activity of alternative σ factors but one example of a housekeeping sigma factor regulation by a PSS has been recently brought to light (Figure 1). Indeed, the primary σ factor σ66 of *Chlamydia trachomatis* is controlled by PSS partners (Hua et al., 2006; Thompson et al., 2015).

Atypical partner-switching modules

In *E. coli*, σ70 activity is also modulated by the anti-σ factor Rsd and the histidine phosphorylatable HPr that acts as an anti-σ factor antagonist. However, even though the mechanism of sequestration and release of the σ factor is alike that of PSS, the two partners Rsd and HPr are not homologous to typical PSS proteins with HPr playing a primary role in the translocation of several sugars across the membrane (Mitchell et al., 2007; Yuan et al., 2008; Hofmann et al., 2011; Park et al., 2013, 2015).

In Gram-negative α-proteobacterial species, the σ factor controlling the GSR called σECFG, RpoE or SigT depending on the bacterium, is controlled by an atypical PSS (Figure 2F) (Francez-Charlot et al., 2009; Staroń et al., 2009; Campagne et al., 2012; Kaczmarczyk et al., 2014; Kim et al., 2014; Francez-Charlot et al., 2015; Fiebig et al., 2015; Herrou et al., 2015; Francez-Charlot et al., 2016). Indeed, the PSS partners are not homologous to canonical PSS proteins. Nevertheless, they use a similar mechanism of sequestration and release of the σ factor as typical PSS. The PSS module of GSR regulation is mostly shared by α-proteobacterial species with little divergences. In all cases, two proteins are involved: the anti-σ factor NepR and the two-domain PhyR. The latter acts as an anti-σ factor antagonist and contains a N-terminal σ-like factor and a C-terminal receiver domains (Figure 2F). NepR possesses homologies with σECF factors. Phosphorylation of the receiver domain increases the affinity between the σ-like domain of PhyR and NepR so that the σECF is freed whereas unphosphorylated PhyR has almost no affinity for NepR that in turn binds
to σ^{ECFG}. The phosphorylation state of PhyR is controlled by various histidine kinases that detect and transduce signals including blue light and osmolytes. As for GSR regulation of Gram-positive bacteria, the composition and the number of the sensory inputs vary greatly from a bacterium to another depending on their lifestyle (Fiebig et al., 2015; Francez-Charlot et al., 2015).

Activation of partner-switching systems

Diversified sensory and transducing modules appear to converge to PSS, although the mechanisms of transduction have not been unraveled in most cases. Input modules could be two-component systems, chemosensory systems or might be directly integrated in PSS modules via the addition of sensing domain(s) in PSS proteins (Figures 1 and 2) (Hsu et al., 2008; Morris and Visick, 2013a; Lambert et al., 2015; Norsworthy and Visick, 2015; Chambonnier et al., 2016).

In the Gram-positive bacteria *Bacillus, Listeria* and *Staphylococcus*, the stress responsive σ factor σ^B is submitted to a PSS. The PSS module formed by the anti-σ factor RsbW and the anti-σ factor antagonist RsbV is conserved but the RsbV phosphatases as well as the mechanisms of signal transduction to the PSS module diverge from one species to another (Figure 2A and 2B).

In *B. subtilis*, two sensing modules linked to two independent PP2C-containing phosphatases (RsbU and RsbP) converge to the PSS module. Environmental stresses including blue light, heat shock and osmolytes are detected by a protein complex called the stressosome that subsequently transduces signals to the PP2C phosphatase RsbU. The energetic level of the cell is perceived by the PAS domain containing phosphatase RsbP associated with the hydrolase RsbQ (Figure 2A) (Benson and Haldenwang, 1993; Boylan et al., 1993; Voelker et al., 1996; Kim et al., 2004; Marles-Wright et al., 2008; Marles-Wright and Lewis, 2010; Price, 2011; Gaidenko and Price, 2014; Guldimann et al., 2016). RsbU, RsbP and a stressosome are absent from other *Bacillales* as *B. cereus*. They are replaced by the RsbY protein composed of a receiver fused to a PP2C domain and the complex histidine kinase RsbK, which is able to detect internal and environmental stresses and thus transduces the signal to RsbY (Figure 2B) (van Schaik et al., 2005; de Been et al., 2010, 2011). Interestingly, genes coding for a stressosome-like complex are also found in many species in particular among the proteobacteria, cyanobacteria and
actinobacteria phyla (Pané-Farré et al., 2005; Jia et al., 2016). Likewise, homologs of the histidine
kinase RsbK have been found in many species including the proteobacterial genus Vibrio,
Pseudomonas, Magnetococcus or Myxococcus but their roles are still unknown (de Been et al.,
2011).
Streptomyces coelicolor PSS regulation of σB resembles that of B. subtilis but possesses an
additional PSS absent from other species (Lee et al., 2004): the Osa system that regulates σB
under "back to normal" conditions after an osmotic shock. OsaA is a RsbK homolog that may
detect signals from a GAF domain, OsaB is a two-domain protein with a N-terminal receiver and
an unknown C-terminal domain, and OsaC contains an anti-σ factor, a PAS, two GAF and a PP2C-
type phosphatase domains (Figure 2C) (Martínez et al., 2009; Price, 2011). The regulatory
cascade that regulates σB availability is still unknown but the domain composition of OsaC
suggests a direct additional signal sensing by the phosphatase protein. In the Actinomycetales
Mycobacterium tuberculosis, the GSR σ factor called σF is also mediated by two PSS (DeMaio et al.,
1997). Notably, the protein Rv1364c is a PSS module organized in four domains corresponding
to a PAS, a phosphatase, an anti-σ factor and an anti-σ factor antagonist domain (Parida et al.,
2005; Sachdeva et al., 2008; Greenstein et al., 2009; Malik et al., 2009; Jaiswal et al., 2010; King-
Scott et al., 2011). It has been shown that its anti-σ factor domain can bind to σF whereas its anti-
σ factor antagonist domain antagonizes the action of the anti-σ domain. However, the complex
network of σF post-translational regulation has not been completely unraveled yet, but Rv1364c
seems to detect signals itself without upstream sensing module.
The PSS composed of HsbR and HsbA from P. aeruginosa is activated by a complex
phosphocascade. The histidine phosphotransfer protein HptB constitutes the module activating
HsbR. HptB acts in the GacA-GacS two-component pathway regulating sRNA involved in P.
aeruginosa biofilm formation and pathogenesis (Lin et al., 2006; Hsu et al., 2008; Bordi et al.,
2010; Bhuwan et al., 2012; Houot et al., 2012; Chambonnier et al., 2016). Moreover, other
histidine kinases have been shown to detect specific signals and transduce them by
phosphorylating HptB that in turn phosphorylates the receiver domain of HsbR, activating the phosphatase domain of HsbR (Hsu et al., 2008).

Activation of partner-switching modules in various proteobacteria: a role for chemosensory systems

Chemosensory systems (CS) are complex signal transduction pathways mainly involve in the regulation of the flagella rotation necessary for swimming motility in most bacteria. Since then, many CS that do not control bacterial motility have been spotted in various bacteria. They were shown to play a role in the cellular differentiation of *Myxococcus xanthus* and *Rhodospirillum centenum*, in the production of molecules involved in biofilm formation as c-di-GMP or EPS in *P. aeruginosa* and *Azospirillum brasilense* or in the type IV pili based motility in *P. aeruginosa*. In fact, a large number of bacteria possess more than one CS coding locus in their genome, but their roles are still largely unknown (Kirby, 2009; Wuichet and Zhulin, 2010; He and Bauer, 2014).

In *S. oneidensis*, the genes coding for the two PSS proteins CrsA and CrsR are located in the *che1* locus, composed of 10 genes with 8 of them coding for classical CS components (Che proteins). This system is not involved in swimming motility and could form a chemosensory system (Armitano et al., 2013). This gene organization strongly suggests that the chemosensory system *Che1* contains the signal sensing machinery that regulates the activity of the CrsR-CrsA PSS.

Interestingly, it appears that chemosensory machinery adapted to regulate a partner-switch is a common feature of aquatic proteobacteria (Figure 3). Indeed, *crsR* gene homologs are widespread among those bacteria and an analysis of the genes surrounding *crsR* in 59 bacterial genomes was carried out for this review (Bouillet et al., 2017). This phylogenetic analysis clearly shows that the CrsR-CrsA PSS is most of the time genetically related to a *che* locus. As shown in Figure 3, the *crsR-crsA* genes are located in the vicinity of a central histidine kinase *cheA* gene in 71% of these bacteria (32 out of 45), or of two-component histidine kinase(s). This indicates that the sensing modules of the CrsR-CrsA partner-switch could predominantly be a chemosensory system. Interestingly, two genes coding for detectors MCP (Methyl-accepting Chemotaxis Proteins) are comprised in the *che1* locus of *S. oneidensis*. One of them is predicted...
to be anchored to the membrane whereas the other seems to be located in the cytosol and possesses two PAS domains (Figure 2). The two MCP could thus allow the detection of different kinds of signals: one from outside and the other from inside the cell cytoplasm. Interestingly, many PSS controlling the GSR including those in *B. cereus* and in some alpha-proteobacterial species often comprise two sensory detectors presenting similar sensing domains as those found in MCP (Figure 2 and Figure 3). It has been shown that the RsbK histidine kinase from *B. cereus* that controls the downstream RsbVWY PSS is subjected to the methylation by the methyltransferase RsbM, as usually seen in MCP (Chen *et al.*, 2012, 2015). The methylation of RsbK by RsbM leads to the inhibition of σB. As the che1 locus of *S. oneidensis* contains a gene encoding the methyltransferase CheR1, we propose that σS sequestration by CrsR could also be modulated by the methylation level of the two MCP. PSS imbedded in a CS operon has been recently described in *Leptospira interrogans*. This operon contains genes encoding a response regulator composed of a receiver and an anti-σ factor domains, an anti-σ factor antagonist and chemosensory proteins (CheA, CheY, CheW, CheD, CheB, MCP). This PSS that controls a still unknown σ factor could be regulated by the chemosensory system (Eshghi *et al.*, 2014; Lambert *et al.*, 2015). Two-component systems or signal transduction coding genes have also been found in the neighborhood of crsR homologs and could thus be the sensor that detects signals and transduces them to the PSS. Genes encoding Hpt proteins are also found near to crsR-crsA genes in *Hahella ganghwensis* and *Marinobacter lipolyticus* (Figure 3). This illustrates that the sensing modules acting upstream PSS diverge from one species to another. **The case of GSR regulation in bacteria** The main strategy commonly developed by bacteria to respond, defend and adapt to general stresses is to modify its transcriptional program in order to express appropriate genes. This ability is mediated by the use of a specific σ factor. Gram-positive bacteria as *Bacillales* and *Actinomycetales* possess a type-3 σ factor named σB or σS, whereas β- and γ-proteobacteria hold the type-2 σ factor σS and α-proteobacteria use a type-4 σECF often called σECFG (Boylan *et al.*,
Despite the fact that all these σ factors are not homologous and present large differences in terms of sequence and structure, they control analogous processes in the cells (Alvarez-Martinez et al., 2006; Sauviac et al., 2007; Gourion et al., 2009; Martínez-Salazar et al., 2009; Britos et al., 2011; Hengge, 2011; Foreman et al., 2012; Jans et al., 2013; Kim et al., 2013; Landini et al., 2014; Guldimann et al., 2016). Moreover, although their global regulation is highly divergent, the presence of a PSS is a relatively common feature for their post-translational regulation (Figure 2).

Strikingly, although B. cereus and S. oneidensis are distant species and use the two non-homologous GSR σ factors σ^B and σ^S, respectively, the pathways that control their post-translational activity are similar. Conversely, E. coli and S. oneidensis are both γ-proteobacteria and both possess σ^S to regulate GSR, but their post-translational regulations of σ^S are entirely different (Battesti et al., 2011; Price, 2011). This strongly suggests that these regulatory pathways can be more related between bacteria that share common lifestyle than phylogenetic proximity.

Concluding Remarks

Since a couple of years, novel PSS have been detected in many bacteria. These PSS play a key role in major cellular processes although the partner σ factor has not been determined in several cases. PSS are common post-translational regulators for the control of the response to general stress but they are also involved in crucial cell processes as motility, biofilm formation, virulence, and cell differentiation as sporulation. Other physiological roles of PSS will be undoubtedly discovered in the next future.

In fact, based solely on basic bioinformatics, it is quite difficult to find out PSS genes within bacterial genomes mainly because their HATPase domain is common to other types of proteins. Furthermore, each species has to adapt to its own environment, doing this, it has set up dedicated regulatory pathways. PSS and the sensing modules have thus evolved to adapt to their target σ factors and to the signals this σ factor has to be responding to. As a consequence, the
domain organization of the PSS (Figures 1 and 2) and the composition of the sensing modules
depend strongly (Figures 2 and 3). In other words, a common signal transduction pathway like PSS
can be activated by a large range of sensing machineries.

In conclusion, recent results have revealed that PSS are found not only in Gram-positive but also
in Gram-negative bacteria. Moreover, many PSS are governed by complex signaling pathways
including two-component and chemosensory systems. PSS are clearly very efficient and rapid
ways to trigger or stop specific σ factor responses. Therefore, future studies will most probably
reveal novel module architectures for PSS and their regulatory pathways to better respond to
the numberless environmental signals encountered by bacteria.

Acknowledgements

We would like to thank the anonymous reviewers for helpful suggestions, members of the group,
in particular Olivier Lemaire for fruitful discussions and Olivier Genest for discussions and
reviewing the manuscript. We also thank David Redelberger for assistance with drawings. This
work was supported by the Centre National de la Recherche Scientifique and Aix-Marseille
Université (AMU). S.B. was supported by a Ministère de l’Enseignement Supérieur et de la
Recherche fellowship and AMU.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents
of this article.

References

Alper, S., Duncan, L., and Losick, R. (1994) An adenosine nucleotide switch controlling the
Extracytoplasmic Function Sigma Factor Mediating the Response to Oxidative Stress in
FltA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol. Microbiol. 65:
76–89.

the GacS/GacA Two-Component System in Pseudomonas aeruginosa. PLoS Genet. 12:
e1006032.

Signaling Helix Coordinated Inhibitory Receiver Domain in Sensor Kinase Modulates
Environmental Stress Response in Bacillus Cereus. PLoS ONE 10:

gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. Tuber. Lung

interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor
sigma F of Bacillus subtilis. Genes Dev. 8: 2653–2663.

Duncan, L., Alper, S., and Losick, R. (1996) SpoIIAA governs the release of the cell-type specific
transcription factor sigma F from its anti-sigma factor SpoIIAB. J. Mol. Biol. 260: 147–
164.

regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans.
Infect. Immun. 82: 2542–2552.

Regulator of the General Stress Pathway in Caulobacter crescentus. J. Bacteriol. 194:
3038–3049.

and NepR Proteins Are Involved in the General Stress Response in Methylobacterium
extorquens. PloS ONE 11:

signal transduction mechanism within the Bacillus subtilis stressosome. PloS One 9:
e90741.

Galperin, M.Y. (2006) Structural Classification of Bacterial Response Regulators: Diversity of

Gebhardt, M.J. and Shuman, H.A. (2017) GigA and GigB are Master Regulators of Antibiotic

Levkovik, V.M., Blagova, E.V., Rawlings, A.E., Jameson, K., Tunaley, J., Hart, D.J., et al. (2012) Role of a PAS sensor domain in the
redox sensitivity in RsrA, a zinc-containing anti-sigma factor for regulating thiol
General Stress Response System Regulates Chronic Mammalian Infection and Is
virulence regulator, LovhK, is a sensor kinase in the general stress response signalling
regulators correlates with stress transmission in the environmental signaling pathway of
Structural characterization of the multidomain regulatory protein Rv1364c from
Interactions between partner switcher orthologs BtrW and BtrV regulate type III
Kutsukake, K. (1994) Excretion of the anti-sigma factor through a flagellar substructure couples
environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter
and an Anti-Anti-Sigma Factor in Streptomyces coelicolor in Response to Osmotic Stress. J.

Figures legends

Figure 1: Domain organization of PSS modules of chosen bacterial species.

The color code is: red for σ factors, purple for anti-σ factor domains, green for anti-σ factor antagonists (anti-anti-σ factors) and yellow for phosphatase domains. HAMP domains (present in Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases) are linkers possessing a role in signal transduction. Transmembrane domains of membranous proteins are mentioned by "TM" (in black), other proteins are cytoplasmic. REC stands for Receiver domain. Sensing domains comprise: CACHE (Ca^{2+} channels and CHEmotaxis receptors), PAS for Per (Period Circadian Protein), Amt (Aryl hydrocarbon Receptor Nuclear Translocator protein), Sim (Single-Minded Protein) and GAF (for cGMP-specific phosphodiesterases, Adenyl cyclases and FhlA). When known, the physiological role of PSS is indicated as well as its sensing modules. The domain organizations appear on the right part of the figure.
Figure 2: Conserved PSS modules regulating GSR σ factors are controlled by various signal transduction systems.

The signal transduction pathways are divided in three major steps:

1 (blue) - Signal sensing. Modules involved in the signal detection present a large range of mechanisms with various level of complexity. This step is the most diversified and bacteria have been very creative to detect signals and transduce them to the PSS modules.

2 (green) - Intermediate signal transduction from the input (signal sensing) to the output (σ factors). The partner-switching mechanism is highly conserved. The rule is that according to the environmental conditions, the σ factor should be sequestered or released to hamper or allow its regulatory activity, respectively.

3 (red) - The σ factor involved in the GSR. The release of the σ factor leads to the expression of the genes belonging to the σ factor regulon.

Question marks (?) indicate that the steps have not been experimentally demonstrated. * means that the components are not conserved in all alpha-proteobacterial species. A green arrow represents a phosphorylation and a red arrow a dephosphorylation event. “HK-CA” corresponds to the domains HisKA and HATPase involved in receiver (REC) phosphorylation. Histidine kinases from two-component systems and the CheA1 kinase from the Che1 chemosensory system are represented. Protein names are indicated inside the drawing except if the protein harbors multiple domains, in this case the name is written above. The cytoplasmic membrane is symbolized in dark. The colors of the σ factors and the PSS components are those of figure 1. Protein hampering is indicated by a line ending by a small horizontal line. ασ and αασ stand for anti-sigma factor and anti-anti-sigma factor (or anti-sigma factor antagonist).

Figure 3: Occurrence and synteny of CrsR homologs in bacteria

Searches for homologous proteins to S. oneidensis CrsR were performed using the bioinformatics BLAST tool from the NCBI database (NCBI Resource Coordinators, 2016) and the sequences were assembled using the program “Phylogeny” (Dereeper et al., 2008). Among the Gamma-proteobacteria, CrsR homologs are found in Alteromonadales, Chromatiales, Methylococcales,
Oceanospirillales, Pseudomonadales, Thiotrichales, Vibrionales. Symbol “*” indicate a genus.

Among the genus Pseudomonas, the species P. aeruginosa, P. putida, P. chlororaphis, P. fluorescens, P. syringae, P. stutzeri were selected. The symbol “**” indicates that the synteny is conserved in all Pseudomonas species except for P. aeruginosa. The genus Vibrio includes V. mimicus, V. cholerae, V. vulnificus, and the genus Shewanella includes S. xiamenensis, S. decolorationis, S. sp. HN-41, S. baltica OS185, S. sp. ANA-3, S. sp. MR-7, S. putrefaciens and S. oneidensis MR-1. Genes surrounding crsR homologs were examined by hand using the BioCyc database (Romero and Karp, 2004; Krummenacker et al., 2005). The question mark (?) means that the genes surrounding crsR homologs are not exhaustive because of the incomplete database. "HK" stands for Histidine Kinase, "RR" for Response Regulator and “RR-GGDEF” for a receiver domain fused to a GGDEF domain. GGDEF domains have an enzymatic activity producing c-di-GMP necessary for biofilm formation. The corresponding proteins and the color code of the bacterial species are summarized in the bottom of the figure. Inside gene drawings, 3 and 5 indicate the number of copies.
Figure 1

<table>
<thead>
<tr>
<th>Target factor</th>
<th>Anti-oxidant factor</th>
<th>Anti-oxidant factor</th>
<th>Phosphatase</th>
<th>Sensing modules</th>
<th>Species</th>
<th>Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>SpoIIAA</td>
<td>SpoIAB</td>
<td>Phosphatase</td>
<td>Bacillus subtilis</td>
<td>sporulation</td>
<td></td>
</tr>
<tr>
<td>α²</td>
<td>RhlB₁/RhlB₂</td>
<td>RhlB₁</td>
<td>Phosphatase?</td>
<td>Chlamydia trachomatis</td>
<td>housekeeping</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>BtrV</td>
<td>BtrW</td>
<td>Phosphatase?</td>
<td>Bordetella pertussis</td>
<td>type-3 secretion system</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>Lh136</td>
<td>?</td>
<td>?</td>
<td>Leptospira interrogans</td>
<td>virulence/motility</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>La2422</td>
<td>?</td>
<td>?</td>
<td>Leptospira interrogans</td>
<td>motility</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>SyxA</td>
<td>SyxE</td>
<td>RscS (TCS)</td>
<td>Vibrio fisheri and other Vibrio</td>
<td>biotin formation</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>sfr1856 and sfr1059?</td>
<td>sfr1856</td>
<td>ß</td>
<td>Synechocystis sp. Strain PCC 6803</td>
<td>metabolism of inorganic carbon in limiting-CO₂ condition</td>
<td></td>
</tr>
<tr>
<td>α² ?</td>
<td>GigB</td>
<td>Npr</td>
<td>GigA</td>
<td>Actinobacter baumannii</td>
<td>stress responses, pathogenicity and multi-antibiotic resistance</td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td>RbaV</td>
<td>RbaW</td>
<td>RbaY</td>
<td>Rhodobacter capsulatus</td>
<td>stationary phase response and production of gene transfer RcsG</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>RhlB₁</td>
<td>RhlB₁</td>
<td>RhlB₁/RhlB₂/RhlB₃</td>
<td>Bacteriodes</td>
<td>GSR</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>RhlB₁/ ?</td>
<td>RhlB₁/ ?</td>
<td>?/ RhlB₁/ ?</td>
<td>Streptomyces coelicolor</td>
<td>GSR</td>
<td></td>
</tr>
<tr>
<td>α²</td>
<td>CreA</td>
<td>CreR</td>
<td>CreR</td>
<td>Shewanella oneidensis</td>
<td>GSR</td>
<td></td>
</tr>
<tr>
<td>α²</td>
<td>FlrR</td>
<td>NepR</td>
<td>Rbb₁/1673?</td>
<td>Brucella abortus and various e-proteobacteria</td>
<td>GSR</td>
<td></td>
</tr>
</tbody>
</table>

Key
- HAMP
- TM
- REC
- unknown
- CACHE
- PAS
- GAF
- Signal

241 242 243 244 245 246 247
Figure 3

Shewanella

Calestis miuris

Glaucobacter charlottaeensis S16K6

Martinsonia mediterranea MMB-1

Nitritea halophilica

Oceanospirillum hegaricissii

Leuca oryzae

Chitinimonas termonasi

Cithiphilus shannonensis

Chitinifexicum litopenaei

Aerithropia chitiniphila

Dactylo rizii

Anoplophora oryzae (Dechloromonas sulfidicus PS)

Chromobacterium violaceum ATCC 12472

Aerovibrio sp. K595

Candidatus Desulfuromonas magnetotritis BW-1

Teredolhabacter turkestanus T77901

Micromonas tilomorpha 10-D-4

Pseudomonas aeruginosa Ichthyophila CDC 04301

Thiobacillus sp. AK35

Thiobacillus sp. ALI17

Vibrio

Alferomonas maculoidi Deep acetylene

Marinobacter lipolyticus S4109

Selenomonella marmorata

Thalassobulbus oleovorans MIL-1

Halophilic gangneunensis

Pseudomonas

Magnetococcus Marinus MC1

Halobacillus halophilus SL1

Marinobacterium stameterri

Hydrogenovorobacter marinus

Thiomicrospira crunogena XCL-2

Methylophilus demphibius

Methylomonas vulgare

Vibrio harveyi

Vibrio cholerae

Wolinella succinogenes

Sulfurimicrobium pasteuranae

Deltovibrio acetophilus

Candidatus Methylobacterium concomis

Gavialia sp. 121-Ace-BES

Calciferribacterium nitroreducens

Geobacter levis

Alpha-proteobacteria

Beta-proteobacteria

Gamma-proteobacteria

Delta-proteobacteria

Epsilon-proteobacteria

Deferrribacteres

CrsR

CrsA

CheA

MCp

CheW

CheB

CheR

CheY

RK

CheZ

Hpc

HK

RR

HK fused to RR

RR-GDEFF

Flagella component

other