G. Storz, Y. I. Wolf, and K. S. Ramamurthi, Small proteins can no longer be ignored, Annu. Rev. Biochem, vol.83, pp.753-777, 2014.

C. Van-ooij and R. Losick, Subcellular localization of a small sporulation protein in Bacillus subtilis, J. Bacteriol, vol.185, pp.1391-1398, 2003.

W. F. Burkholder, I. Kurtser, and A. D. Grossman, Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis, Cell, vol.104, pp.269-279, 2001.

T. Miyashiro and M. Goulian, Stimulus-dependent differential regulation in the Escherichia coli PhoQ PhoP system, Proc. Natl. Acad. Sci. USA, vol.104, pp.16305-16310, 2007.

L. S. Waters, M. Sandoval, and G. Storz, The Escherichia coli MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis, J. Bacteriol, vol.193, pp.5887-5897, 2011.

G. T. Smaldone, H. Antelmann, A. Gaballa, and J. D. Helmann, The FsrA sRNA and FbpB protein mediate the iron-dependent induction of the Bacillus subtilis lutABC iron-sulfur-containing oxidases, J. Bacteriol, vol.194, pp.2586-2593, 2012.

H. Wang, Increasing intracellular magnesium levels with the 31-amino acid MgtS protein, Proc. Natl. Acad. Sci. USA, vol.114, pp.5689-5694, 2017.
DOI : 10.1073/pnas.1703415114

URL : http://www.pnas.org/content/114/22/5689.full.pdf

Y. Sun, The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus, Front. Cell. Infect. Microbiol, vol.2, p.47, 2012.

R. Scientific, , vol.8, 2018.

C. E. Vanorsdel, The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity, J. Bacteriol, vol.195, pp.3640-3650, 2013.

J. Hoeser, S. Hong, G. Gehmann, R. B. Gennis, and T. Friedrich, Subunit CydX of Escherichia coli cytochrome bd ubiquinol oxidase is essential for assembly and stability of the di-heme active site, FEBS Lett, vol.588, pp.1537-1541, 2014.

H. Chen, Q. Luo, J. Yin, T. Gao, and H. Gao, Evidence for the requirement of CydX in function but not assembly of the cytochrome bd oxidase in Shewanella oneidensis, Biochim. Biophys. Acta, vol.1850, pp.318-328, 2015.

R. J. Allen, Conservation analysis of the CydX protein yields insights into small protein identification and evolution, BMC Genomics, vol.15, p.946, 2014.

A. , E. Blanc-potard, and A. , Peptide-assisted degradation of the Salmonella MgtC virulence factor, EMBO J, vol.27, pp.546-557, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00203832

O. N. Lemaire, Efficient respiration on TMAO requires TorD and TorE auxiliary proteins in Shewanella oneidensis, Res. Microbiol, vol.167, pp.630-637, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01411703

D. Santos, J. P. Iobbi-nivol, C. Couillault, C. Giordano, G. Méjean et al., Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species, J. Mol. Biol, vol.284, pp.421-433, 1998.

P. H. Yancey, M. D. Rhea, K. M. Kemp, and D. M. Bailey, Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure, Cell. Mol. Biol. Noisy-Gd. Fr, vol.50, pp.371-376, 2004.

P. H. Yancey, M. E. Gerringer, J. C. Drazen, A. A. Rowden, and A. Jamieson, Marine fish may be biochemically constrained from inhabiting the deepest ocean depths, Proc. Natl. Acad. Sci. USA, vol.111, pp.4461-4465, 2014.

J. Ma, I. M. Pazos, and F. Gai, Microscopic insights into the protein-stabilizing effect of trimethylamine N-oxide (TMAO), Proc. Natl. Acad. Sci. USA, vol.111, pp.8476-8481, 2014.

A. Silvestro, J. Pommier, M. C. Pascal, and G. Giordano, The inducible trimethylamine N-oxide reductase of Escherichia coli K12: its localization and inducers, Biochim. Biophys. Acta, vol.999, pp.208-216, 1989.

L. M. Proctor and R. P. Gunsalus, Anaerobic respiratory growth of Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi with trimethylamine N-oxide, nitrate and fumarate: ecological implications, Environ. Microbiol, vol.2, pp.399-406, 2000.

V. Méjean, TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon, Mol. Microbiol, vol.11, pp.1169-1179, 1994.

B. C. Berks, D. J. Richardson, A. Reilly, A. C. Willis, and S. J. Ferguson, The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha, Biochem. J, vol.309, pp.983-992, 1995.

S. Gon, M. T. Giudici-orticoni, V. Méjean, and C. Iobbi-nivol, Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli, J. Biol. Chem, vol.276, pp.11545-11551, 2001.

A. L. Shaw, S. Leimkuhler, W. Klipp, G. R. Hanson, and A. Mcewan, Mutational analysis of the dimethylsulfoxide respiratory (dor) operon of Rhodobacter capsulatus, Microbiol. Read. Engl, vol.145, pp.1409-1420, 1999.

M. Ilbert, V. Méjean, M. Giudici-orticoni, J. Samama, and C. Iobbi-nivol, Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA, J. Biol. Chem, vol.278, pp.28787-28792, 2003.

O. Genest, Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components, J. Biol. Chem, vol.283, pp.21433-21440, 2008.

S. Leimkühler and C. Iobbi-nivol, Bacterial molybdoenzymes: old enzymes for new purposes, FEMS Microbiol. Rev, vol.40, pp.1-18, 2016.

C. Iobbi-nivol and S. Leimkühler, Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli, Biochim. Biophys. Acta, vol.1827, pp.1086-1101, 2013.

B. Bjellqvist, The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences, Electrophoresis, vol.14, pp.1023-1031, 1993.

B. Bjellqvist, B. Basse, E. Olsen, and J. E. Celis, Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions, Electrophoresis, vol.15, pp.529-539, 1994.

M. R. Wilkins, Protein identification and analysis tools in the ExPASy server, Methods Mol. Biol. Clifton NJ, vol.112, pp.531-552, 1999.

E. L. Sonnhammer, G. Von-heijne, and A. Krogh, A hidden Markov model for predicting transmembrane helices in protein sequences, Proc. Int. Conf. Intell. Syst. Mol. Biol, vol.6, pp.175-182, 1998.

A. Krogh, B. Larsson, G. Von-heijne, and E. L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, J. Mol. Biol, vol.305, pp.567-580, 2001.

F. Reyes, M. Gavira, F. Castillo, and C. Moreno-vivián, Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster, Biochem. J, vol.331, pp.897-904, 1998.

D. Lopez and G. Koch, Exploring functional membrane microdomains in bacteria: an overview, Curr. Opin. Microbiol, vol.36, pp.76-84, 2017.

J. M. Borrero-de-acuña, K. N. Timmis, M. Jahn, and D. Jahn, Protein complex formation during denitrification by Pseudomonas aeruginosa, Microb. Biotechnol, vol.10, pp.1523-1534, 2017.

F. Alberge, Dynamic subcellular localization of a respiratory complex controls bacterial respiration, p.4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203080

H. Wei, Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1, Microbiol. Read. Engl, vol.162, pp.930-941, 2016.

M. N. Alves, Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1, Front. Microbiol, vol.6, 2015.

C. Schwalb, S. K. Chapman, and G. A. Reid, The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella, Biochem. Soc. Trans, vol.30, pp.658-662, 2002.

H. Gao, Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration, Microb. Biotechnol, vol.3, pp.455-466, 2010.

C. Iobbi-nivol, A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12, FEMS Microbiol. Lett, vol.119, pp.89-94, 1994.

L. Shi and W. P. Schröder, The low molecular mass subunits of the photosynthetic supracomplex, photosystem II, Biochim. Biophys. Acta, vol.1608, pp.75-96, 2004.

M. Gassel, T. Möllenkamp, W. Puppe, and K. Altendorf, The KdpF subunit is part of the K( + )-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro, J. Biol. Chem, vol.274, pp.37901-37907, 1999.

P. Kaufmann, Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase, Biochemistry (Mosc.), vol.57, pp.1130-1143, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01889976

S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

P. Rice, I. Longden, and A. Bleasby, EMBOSS: the European Molecular Biology Open Software Suite, Trends Genet. TIG, vol.16, pp.276-277, 2000.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

C. Ncbi-resource, Database resources of the National Center for Biotechnology Information, Nucleic Acids Res, vol.46, pp.8-13, 2018.

D. A. Benson, I. Karsch-mizrachi, D. J. Lipman, J. Ostell, E. W. Sayers et al., Nucleic Acids Res, vol.37, pp.26-31, 2009.

G. E. Crooks, G. Hon, J. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.

R. K. Appleyard, Segregation of New Lysogenic Types during Growth of a Doubly Lysogenic Strain Derived from Escherichia Coli K12, Genetics, vol.39, pp.440-452, 1954.

R. Scientific, , vol.8, 2018.

M. Herrero, V. De-lorenzo, and K. N. Timmis, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria, J. Bacteriol, vol.172, pp.6557-6567, 1990.

C. Bordi, L. Théraulaz, V. Méjean, and C. Jourlin-castelli, Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli, Mol. Microbiol, vol.48, pp.211-223, 2003.

F. A. Honoré, V. Méjean, and O. Genest, Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis, Cell Rep, vol.19, pp.680-687, 2017.

O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem, vol.193, pp.265-275, 1951.

H. Schägger, W. A. Cramer, and G. Jagow, Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis, Anal. Biochem, vol.217, pp.220-230, 1994.

I. Wittig, M. Karas, and H. Schägger, High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes, Mol. Cell. Proteomics MCP, vol.6, pp.1215-1225, 2007.

S. Boughanemi, Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus, FEMS Microbiol. Lett, vol.363, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01436272

A. Battesti and E. Bouveret, The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli, Methods San Diego Calif, vol.58, pp.325-334, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01458246

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proc. Natl. Acad. Sci. USA, vol.95, pp.5752-5756, 1998.

J. H. Miller, Experiments in molecular genetics, 1972.

N. Guex, M. C. Peitsch, and T. Schwede, Automated comparative protein structure modeling with SWISS-MODEL and SwissPdbViewer: a historical perspective, Electrophoresis, vol.30, pp.162-173, 2009.

P. Benkert, M. Biasini, and T. Schwede, Toward the estimation of the absolute quality of individual protein structure models, Bioinforma. Oxf. Engl, vol.27, pp.343-350, 2011.

M. Biasini, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res, vol.42, pp.252-258, 2014.

S. Bienert, The SWISS-MODEL Repository-new features and functionality, Nucleic Acids Res, vol.45, pp.313-319, 2017.

M. Bertoni, F. Kiefer, M. Biasini, L. Bordoli, and T. Schwede, Modeling protein quaternary structure of homo-and hetero-oligomers beyond binary interactions by homology, Sci. Rep, vol.7, p.10480, 2017.

M. L. Rodrigues, T. F. Oliveira, I. A. Pereira, and M. Archer, X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination, EMBO J, vol.25, pp.5951-5960, 2006.

M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, and A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes, Nucleic Acids Res, vol.40, pp.370-376, 2012.

N. Hurwitz, D. Schneidman-duhovny, and H. J. Wolfson, Memdock: an ?-helical membrane protein docking algorithm, Bioinforma. Oxf. Engl, vol.32, pp.2444-2450, 2016.

Y. Chang, Architecture of the type IVa pilus machine, Science, vol.351, p.2001, 2016.

L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith, Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J. Bacteriol, vol.177, pp.4121-4130, 1995.

E. Arslan, H. Schulz, R. Zufferey, P. Künzler, and L. Thöny-meyer, Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli, Biochem. Biophys. Res. Commun, vol.251, pp.744-747, 1998.