Multi-Dynamics Analysis of QRS Complex for Atrial Fibrillation Diagnosis

Abstract : This paper presents an effective atrial fibrillation (AF) diagnosis algorithm based on multi-dynamics analysis of QRS complex. The idea behind this approach is to produce a variety of heartbeat time series features employing several linear and nonlinear functions via different dynamics of the QRS complex signal. These extracted features from these dynamics will be connected through machine learning based algorithms such as Support Vector Machine (SVM) and Multiple Kernel Learning (MKL), to detect AF episode occurrences. The reported performances of these methods were evaluated on the Long-Term AF Database which includes 84 of 24-hour ECG recording. Thereafter, each record was divided into consecutive intervals of one-minute segments to feed the classifier models. The obtained sensitivity, specificity and positive classification using SVM were 96.54%, 99.69%, and 99.62%, respectively, and for MKL they reached 95.47%, 99.89%, and 99.87%, respectively. Therefore, these medical-oriented detectors can be clinically valuable to healthcare professional for screening AF pathology.
Type de document :
Communication dans un congrès
2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), Apr 2018, Thessaloniki, France. IEEE, 〈10.1109/CoDIT.2018.8394935〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal-amu.archives-ouvertes.fr/hal-01893141
Contributeur : Youssef Trardi <>
Soumis le : jeudi 11 octobre 2018 - 10:29:59
Dernière modification le : dimanche 14 octobre 2018 - 01:15:14
Document(s) archivé(s) le : samedi 12 janvier 2019 - 13:07:36

Fichier

TRARDI_CoDIT2018.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Y. Trardi, B. Ananou, Z. Haddi, M. Ouladsine. Multi-Dynamics Analysis of QRS Complex for Atrial Fibrillation Diagnosis. 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT), Apr 2018, Thessaloniki, France. IEEE, 〈10.1109/CoDIT.2018.8394935〉. 〈hal-01893141〉

Partager

Métriques

Consultations de la notice

92

Téléchargements de fichiers

18