L. Calvanese, L. Falcigno, F. Squeglia, G. D. Auria, and R. Berisio, PASTA in penicillin binding proteins and serine/threonine kinases: a recipe of structural, dynamic and binding properties, Curr Med Chem, 2017.

A. Fleurie, Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae, Mol Microbiol, vol.83, pp.746-758, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00965574

E. Foulquier, PrkC-mediated Phosphorylation of Overexpressed YvcK Protein Regulates PBP1 Protein Localization in Bacillus subtilis mreB Mutant Cells, J Biol Chem, vol.289, pp.23662-23669, 2014.

S. F. Pereira, L. Goss, and J. Dworkin, Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiology and molecular biology reviews: MMBR 75, pp.192-212, 2011.
DOI : 10.1128/mmbr.00042-10

URL : https://mmbr.asm.org/content/mmbr/75/1/192.full.pdf

A. Ruggiero, P. De-simone, G. Smaldone, F. Squeglia, and R. Berisio, Bacterial cell division regulation by Ser/Thr kinases: a structural perspective, Curr Protein Pept Sci, vol.13, pp.756-766, 2012.
DOI : 10.2174/1389203711213080005

URL : http://europepmc.org/articles/pmc3601408?pdf=render

C. Yeats, R. D. Finn, and A. Bateman, The PASTA domain: a beta-lactam-binding domain, Trends Biochem Sci, vol.27, p.0968000402021643, 2002.
DOI : 10.1016/s0968-0004(02)02164-3

H. Ogawara, Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria, J Antibiot (Tokyo), vol.69, pp.660-685, 2016.

I. A. Stancik, Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life, J Mol Biol, 2017.

R. F. Pratt, Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins), Cell Mol Life Sci, vol.65, pp.2138-2155, 2008.
DOI : 10.1007/s00018-008-7591-7

B. Maestro, Recognition of peptidoglycan and ?-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae, FEBS Lett, vol.585, pp.357-363, 2011.

F. Squeglia, Chemical basis of peptidoglycan discrimination by PrkC, a key kinase involved in bacterial resuscitation from dormancy, J Am Chem Soc, vol.133, pp.20676-20679, 2011.

P. Hardt, The cell wall precursor lipid II acts as a molecular signal for the Ser/Thr kinase PknB of Staphylococcus aureus, Int J Med Microbiol, vol.307, pp.1-10, 2017.

P. Barthe, G. V. Mukamolova, C. Roumestand, and M. Cohen-gonsaud, The structure of PknB extracellular PASTA domain from Mycobacterium tuberculosis suggests a ligand-dependent kinase activation, Structure, vol.18, pp.606-615, 2010.

S. Manuse, A. Fleurie, L. Zucchini, C. Lesterlin, and C. Grangeasse, Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis, FEMS Microbiol Rev, 2015.

P. Paracuellos, The extended conformation of the 2.9-Å crystal structure of the three-PASTA domain of a Ser/Thr kinase from the human pathogen Staphylococcus aureus, J Mol Biol, vol.404, pp.847-858, 2010.

A. Ruggiero, X-ray structural studies of the entire extracellular region of the serine/threonine kinase PrkC from Staphylococcus aureus, Biochem J, vol.435, pp.33-41, 2011.

T. A. Gaidenko, T. J. Kim, and C. W. Price, The PrpC serine-threonine phosphatase and PrkC kinase have opposing physiological roles in stationary-phase Bacillus subtilis cells, J Bacteriol, vol.184, pp.6109-6114, 2002.

E. Madec, A. Laszkiewicz, A. Iwanicki, M. Obuchowski, and S. Seror, Characterization of a membrane-linked Ser/Thr protein kinase in Bacillus subtilis, Mol Microbiol, vol.46, p.3178, 2002.

I. M. Shah, M. H. Laaberki, D. L. Popham, and J. Dworkin, A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments, Cell, vol.135, pp.486-496, 2008.

F. Pompeo, E. Foulquier, B. Serrano, C. Grangeasse, and A. Galinier, Phosphorylation of the cell division protein GpsB regulates PrkC kinase activity through a negative feedback loop in Bacillus subtilis, Mol Microbiol, vol.97, pp.139-150, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452059

D. M. Prigozhin, Structural and Genetic Analyses of the Mycobacterium tuberculosis Protein Kinase B Sensor Domain Identify a Potential Ligand-binding Site, J Biol Chem, vol.291, pp.22961-22969, 2016.

I. M. Shah and J. Dworkin, Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides, Mol Microbiol, vol.75, pp.1232-1243, 2010.

C. Absalon, EF-Tu and the stressosome protein YezB are substrates of the Ser/Thr kinase/phosphatase couple, PrkC/ PrpC, in Bacillus subtilis, Microbiology, vol.155, pp.932-943, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00594193

B. D. Labbe and C. J. Kristich, Growth-and stress-induced PASTA kinase phosphorylation in Enterococcus faecalis, J Bacteriol, 2017.

M. Mir, The extracytoplasmic domain of the Mycobacterium tuberculosis Ser/Thr kinase PknB binds specific muropeptides and is required for PknB localization, PLoS Pathog, vol.7, 2011.

L. Zucchini, PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae, Nat Microbiol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01887855

K. Beilharz, Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP, Proc Natl Acad Sci, vol.109, 2012.

R. Scientific, , vol.8, 2018.

C. Morlot, Interaction of Penicillin-Binding Protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis, Mol Microbiol, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00972081

H. C. Tsui, Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39, Mol Microbiol, vol.94, 2014.

E. Madec, Mass spectrometry and site-directed mutagenesis identify several autophosphorylated residues required for the activity of PrkC, a Ser/Thr kinase from Bacillus subtilis, J Mol Biol, vol.330, pp.459-472, 2003.

F. Pompeo, Phosphorylation of CpgA protein enhances both its GTPase activity and its affinity for ribosome and is crucial for Bacillus subtilis growth and morphology, J Biol Chem, vol.287, pp.20830-20838, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00965576

L. Calvanese, L. Falcigno, F. Squeglia, G. D'-auria, and R. Berisio, Structural and dynamic features of PASTA domains with different functional roles, J Biomol Struct Dyn, vol.35, pp.2293-2300, 2017.

A. Atrih, G. Bacher, G. Allmaier, M. P. Williamson, and S. J. Foster, Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation, J Bacteriol, vol.181, pp.3956-3966, 1999.

K. Brown, Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily, Embo J, vol.18, pp.4096-4107, 1999.

P. J. Lewis and A. L. Marston, GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis, Gene, vol.227, pp.101-110, 1999.

C. R. Stenbak, Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway, J Immunol, vol.173, pp.7339-7348, 2004.

P. Gamba, J. W. Veening, N. J. Saunders, L. W. Hamoen, and R. A. Daniel, Two-step assembly dynamics of the Bacillus subtilis divisome, J Bacteriol, vol.191, pp.4186-4194, 2009.