L. Alibaud, Y. Rombouts, X. Trivelli, A. Burguiere, S. L. Cirillo et al., A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos, Mol Microbiol, vol.80, pp.919-953, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00641589

C. Astarie-dequeker, L. Guyader, L. Malaga, W. Seaphanh, F. K. Chalut et al., Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids, PLoS Pathog, vol.5, p.1000289, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02333313

S. Dhungel, C. Ranjit, B. R. Sapkota, and M. Macdonald, Role of PGL-I of M. leprae in TNF-alpha production by in vitro whole blood assay, Nepal Med Coll J, vol.10, pp.1-3, 2008.

J. A. Ferreras, K. L. Stirrett, X. Lu, J. S. Ryu, C. E. Soll et al., Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and smallmolecule inhibition of polyketide chain initiation, Chem Biol, vol.15, pp.51-61, 2008.

V. Point, R. K. Malla, S. Diomande, B. P. Martin, V. Delorme et al., Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases, J Med Chem, vol.55, pp.10204-10223, 2012.

V. Point, R. K. Malla, F. Carriere, S. Canaan, C. D. Spilling et al.,

, J Med Chem, vol.56, pp.4393-401, 2013.

B. P. Martin, E. Vasilieva, C. M. Dupureur, and C. D. Spilling, Synthesis and comparison of the biological activity of monocyclic phosphonate, difluorophosphonate and phosphate analogs of the natural AChE inhibitor cyclophostin, Bioorg Med Chem, vol.23, pp.7529-7563, 2015.

E. Vasilieva, S. Dutta, R. K. Malla, B. P. Martin, C. D. Spilling et al., Rat hormone sensitive lipase inhibition by cyclipostins and their analogs, Bioorg Med Chem, vol.23, pp.944-52, 2015.

P. C. Nguyen, A. Madani, P. Santucci, B. P. Martin, R. R. Paudel et al., Cyclophostin and cyclipostins analogs, new promising molecules to treat mycobacterialrelated diseases, Int J Antimicrob Agents, vol.51, pp.651-655, 2018.

P. C. Nguyen, V. Delorme, A. Benarouche, B. P. Martin, R. Paudel et al., Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis, Sci Rep, vol.7, p.11751, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791688

S. S. Chavadi, U. R. Edupuganti, O. Vergnolle, F. I. Singh, S. M. Soll et al., Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria, J Biol Chem, vol.286, pp.24616-24641, 2011.

G. A. De-souza and H. G. Wiker, A proteomic view of mycobacteria, Proteomics, vol.11, pp.3118-3145, 2011.

S. Gu, J. Chen, K. M. Dobos, E. M. Bradbury, J. T. Belisle et al., Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain, Mol Cell Proteomics, vol.2, pp.1284-96, 2003.

J. E. Griffin, J. D. Gawronski, M. A. Dejesus, T. R. Ioerger, B. J. Akerley et al., High-resolution cholesterol catabolism, PLoS Pathog, vol.7, p.1002251, 2011.

S. J. Waddell, G. A. Chung, K. J. Gibson, M. J. Everett, D. E. Minnikin et al., Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv, Lett Appl Microbiol, vol.40, pp.201-207, 2005.

A. Rao and A. Ranganathan, Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis, Mol Genet Genomics, vol.272, pp.571-580, 2004.

F. Kovacic, J. Granzin, S. Wilhelm, B. Kojic-prodic, R. Batra-safferling et al., Structural and functional characterisation of TesA -a novel lysophospholipase A from Pseudomonas aeruginosa, PLoS One, vol.8, p.69125, 2013.

P. K. Crellin, J. P. Vivian, J. Scoble, F. M. Chow, N. P. West et al., Tetrahydrolipstatin inhibition, functional analyses, and three-dimensional structure of a lipase essential for mycobacterial viability, J Biol Chem, vol.285, pp.30050-60, 2010.

S. K. Parker, R. M. Barkley, J. G. Rino, and M. L. Vasil, Mycobacterium tuberculosis Rv3802c encodes a phospholipase/thioesterase and is inhibited by the antimycobacterial agent tetrahydrolipstatin, PLoS One, vol.4, p.4281, 2009.

V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carrière et al., Effects of Surfactants on Lipase Structure, Activity and Inhibition. Pharmaceutical Research, vol.28, pp.1831-1873, 2011.

H. Chahinian, L. Nini, E. Boitard, J. P. Dubes, L. C. Comeau et al., Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG, Lipids, vol.37, pp.653-62, 2002.

S. Ulker, C. Placidi, V. Point, B. Gadenne, C. Serveau-avesque et al., New lipase assay using Pomegranate oil coating in microtiter plates, Biochimie, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01472891

M. Schué, D. Maurin, R. Dhouib, N. 'goma, J. C. Delorme et al., Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function, Faseb J, vol.24, pp.1893-903, 2010.

M. S. Ravindran, S. P. Rao, X. Cheng, A. Shukla, A. Cazenave-gassiot et al., Targeting Lipid Esterases in Mycobacteria Grown Under Different Physiological Conditions Using Activitybased Profiling with Tetrahydrolipstatin (THL), Mol Cell Proteomics, vol.13, pp.435-483, 2014.

Y. Liu, M. P. Patricelli, and B. F. Cravatt, Activity-based protein profiling: The serine hydrolases, Proc Natl Acad Sci, vol.96, pp.14694-14703, 1999.

A. Aloulou, J. A. Rodriguez, S. Fernandez, D. Van-oosterhout, D. Puccinelli et al., Exploring the specific features of interfacial enzymology based on lipase studies, Biochimica et Biophysica Acta (BBA) -Molecular and Cell Biology of Lipids, vol.1761, pp.995-1013, 2006.

D. Pappin, P. Hojrup, and A. J. Bleasby, Rapid identification of proteins by peptidemass fingerprinting, Curr Biol, vol.3, pp.327-359, 1993.

A. Viljoen, M. Richard, P. C. Nguyen, P. Fourquet, L. Camoin et al., Cyclipostins and Cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo, J Biol Chem, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770061

J. T. Belisle, V. D. Vissa, T. Sievert, K. Takayama, P. J. Brennan et al., Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis, Science, vol.276, pp.1420-1422, 1997.

M. Jackson, C. Raynaud, M. A. Laneelle, C. Guilhot, C. Laurent-winter et al., Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope, Mol Microbiol, vol.31, pp.1573-87, 1999.

H. B. Claxton, D. L. Akey, M. K. Silver, S. J. Admiraal, and J. L. Smith, Structure and functional analysis of RifR, the type II thioesterase from the rifamycin biosynthetic pathway, J Biol Chem, vol.284, pp.5021-5030, 2009.

E. Krissinel and K. Henrick, Inference of Macromolecular Assemblies from Crystalline State, Journal of Molecular Biology, vol.372, pp.774-97, 2007.

P. D. Carr and D. L. Ollis, Alpha/beta hydrolase fold: an update, Protein Pept Lett, vol.16, pp.1137-1185, 2009.

C. Martinez, N. A. Van-tilbeurgh, H. Egloff, M. Cudrey, C. Verger et al., Biochemistry, vol.33, pp.83-92, 1994.

F. I. Khan, D. Lan, R. Durrani, W. Huan, Z. Zhao et al., The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties, Front Bioeng Biotechnol, vol.5, p.16, 2017.

H. Van-tilbeurgh, M. Egloff, C. Martinez, N. Rugani, R. Verger et al., Interfacial activation of the lipaseprocolipase complex by mixed micelles revealed by X-Ray crystallography, Nature, vol.362, pp.814-834, 1993.

L. Holm and P. Rosenstrom, Dali server: conservation mapping in 3D, Nucleic Acids Res, vol.38, pp.545-554, 2010.

A. Roussel, S. Canaan, M. P. Egloff, M. Riviere, L. Dupuis et al., Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest, J Biol Chem, vol.274, pp.16995-7002, 1999.

A. Roussel, N. Miled, L. Berti-dupuis, M. Riviere, S. Spinelli et al., Crystal structure of the open form of dog gastric lipase in complex with a phosphonate inhibitor, J Biol Chem, vol.277, pp.2266-74, 2002.

A. Aggarwal, M. K. Parai, N. Shetty, D. Wallis, L. Woolhiser et al., Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13, Cell, vol.170, pp.249-59, 2017.

I. Comas, M. Coscolla, T. Luo, S. Borrell, K. E. Holt et al., Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans, Nature Genetics, vol.45, p.1176, 2013.

D. Ferraris, R. Miggiano, F. Rossi, and M. Rizzi, Mycobacterium tuberculosis Molecular Determinants of Infection, Survival Strategies, and Vulnerable Targets. Pathogens, vol.7, p.17, 2018.

S. Wellington and D. T. Hung, The expanding diversity of Mycobacterium tuberculosis drug targets, ACS Infect Dis, 2018.

T. Yuan and N. S. Sampson, Hit Generation in TB Drug Discovery: From Genome to Granuloma, Chem Rev, 2018.

A. Zumla, P. Nahid, and C. St, Advances in the development of new tuberculosis drugs and treatment regimens, Nat Rev Drug Discov, vol.12, pp.388-404, 2013.

N. Miled, A. Roussel, C. Bussetta, L. Berti-dupuis, M. Riviere et al., Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study, Biochemistry, vol.42, pp.11587-93, 2003.

G. Sciara, S. Blangy, M. Siponen, M. Grath, S. Van-sinderen et al., A topological model of the baseplate of lactococcal phage Tuc2009, J Biol Chem, vol.283, pp.2716-2739, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02066265

V. Delorme, S. V. Diomande, L. Dedieu, J. F. Cavalier, F. Carriere et al., MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth, PLoS One, vol.7, p.46493, 2012.

R. Verger and G. H. De-haas, Interfacial enzyme kinetics of lipolysis, Annual Review Biophys Bioeng, vol.5, pp.77-117, 1976.

S. Ransac, C. Riviere, J. M. Soulie, C. Gancet, R. Verger et al., Competitive inhibition of lipolytic enzymes. I. A kinetic model applicable to water-insoluble competitive inhibitors, Biochimica et Biophysica Acta (BBA) -Molecular and Cell Biology of Lipids, vol.1043, pp.57-66, 1990.

A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal Chem, vol.68, pp.850-858, 1996.

U. Mueller, L. Nyarsik, M. Horn, H. Rauth, T. Przewieslik et al., Development of a technology for automation and miniaturization of protein crystallization, J Biotechnol, vol.85, pp.7-14, 2001.

W. Kabsch and . Xds, Acta Crystallogr D Biol Crystallogr, vol.66, pp.125-157, 2010.

P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr D Biol Crystallogr, vol.66, pp.213-234, 2010.

P. Emsley and K. Cowtan, Coot: modelbuilding tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, vol.60, pp.2126-2158, 2004.

E. Blanc, P. Roversi, C. Vonrhein, C. Flensburg, S. M. Lea et al., Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT, Acta Crystallogr D Biol Crystallogr, vol.60, pp.2210-2231, 2004.

A. A. Lebedev, P. Young, M. N. Isupov, O. V. Moroz, A. A. Vagin et al., JLigand: a graphical tool for the CCP4 template-restraint library, Resolution limits (Å), vol.68, pp.75-77, 2012.

. B-wilson,

, Average B-factor per chain