B. Abraham, O. I. Camps, and M. Sznaier, Dynamic texture with Fourier descriptors, Proceedings of the 4th International Workshop on Texture Analysis and Synthesis, vol.1, pp.53-58, 2005.

E. H. Adelson and J. R. Bergen, Spatiotemporal energy models for the perception of motion, pp.284-99, 1985.

R. T. Born and D. C. Bradley, Structure and function of visual area MT, Annual review of neuroscience 28.1, pp.157-89, 2005.

P. J. Brockwell and A. Lindner, Existence and uniqueness of stationary Lévydriven CARMA processes, Stochastic Processes and their Applications 119, vol.8, pp.2660-2681, 2009.

P. Brockwell, R. Davis, and Y. Yang, Continuous-time Gaussian autoregression, Statistica Sinica, vol.17, p.63, 2007.

K. R. Brooks, T. Morris, and P. Thompson, Contrast and stimulus complexity moderate the relationship between spatial frequency and perceived speed: Implications for MT models of speed perception, Journal of vision, vol.11, pp.19-19, 2011.

J. Burge and W. S. Geisler, Optimal speed estimation in natural image movies predicts human performance, Nature communications, vol.6, p.7900, 2015.

M. Colombo and P. Serì, Bayes in the brain: on Bayesian modelling in neuroscience". In: The British journal for the philosophy of science 63, vol.3, pp.697-723, 2012.

R. Costantini, L. Sbaiz, and S. Süsstrunk, Higher order SVD analysis for dynamic texture synthesis, Image Processing, pp.42-52, 2008.

J. J. Dicarlo, D. Zoccolan, and N. C. Rust, How Does the Brain Solve Visual Object Recognition?, In: Neuron, vol.73, pp.415-434, 2012.

D. Dong, Maximizing Causal Information of Natural Scenes in Motion, Dynamics of Visual Motion Processing, pp.261-282, 2010.

G. Doretto, Dynamic Textures, International Journal of Computer Vision, vol.51, pp.91-109, 2003.

K. Doya, Bayesian brain: Probabilistic approaches to neural coding, 2007.

N. El-karoui, S. Peng, and M. C. Quenez, Backward stochastic differential equations in finance, Mathematical finance 7.1, pp.1-71, 1997.

J. Filip, M. Haindl, and D. Chetverikov, Fast synthesis of dynamic colour textures, Pattern Recognition, 2006. ICPR 2006. 18th International Conference on, vol.4, pp.25-28, 2006.

S. Fischer, Self-invertible 2D log-Gabor wavelets, International Journal of Computer Vision, vol.75, pp.231-246, 2007.

R. F. Fox, Stochastic versions of the Hodgkin-Huxley equations, Biophysical Journal, vol.72, pp.2068-2074, 1997.

B. Galerne, Stochastic image models and texture synthesis, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00567314

B. Galerne, Y. Gousseau, and J. M. Morel, Micro-Texture Synthesis by Phase Randomization, In: IEEE T. Image. Process, vol.1, 2010.

N. Gekas, A Normalization Mechanism for Estimating Visual Motion across Speeds and Scales, Current Biology 27, vol.10, pp.1514-1520, 2017.

I. M. Gel'fand, N. Y. Vilenkin, and A. Feinstein, Generalized functions, vol.4, 1964.

R. L. Gregory, Perceptions as hypotheses, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.290, pp.181-197, 1038.

O. Hassan and S. T. Hammett, Perceptual biases are inconsistent with Bayesian encoding of speed in the human visual system, Journal of vision, vol.15, pp.9-9, 2015.

O. Hassan, P. Thompson, and S. T. Hammett, Perceived speed in peripheral vision can go up or down, Journal of vision, vol.16, pp.20-20, 2016.

M. Hyndman, A. D. Jepson, and D. J. Fleet, Higher-order Autoregressive Models for Dynamic Textures, BMVC, pp.1-10, 2007.

M. Jogan and A. A. Stocker, Signal Integration in Human Visual Speed Perception, The Journal of Neuroscience, vol.35, pp.9381-9390, 2015.

N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions, vol.1, pp.211-213, 1994.

D. Kersten, P. Mamassian, and A. Yuille, Object perception as Bayesian inference, Annu. Rev. Psychol, vol.55, pp.271-304, 2004.

D. C. Knill and A. Pouget, The Bayesian brain: the role of uncertainty in neural coding and computation, TRENDS in Neurosciences, vol.27, pp.712-719, 2004.

C. Liu, Dynamic Textures Synthesis as Nonlinear Manifold Learning and Traversing, In: BMVC. Citeseer, pp.859-868, 2006.

R. Meidan, On the connection between ordinary and generalized stochastic processes, Journal of Mathematical Analysis and Applications, vol.76, pp.124-133, 1980.

A. I. Meso and C. Simoncini, Towards an understanding of the roles of visual areas MT and MST in computing speed, Frontiers in computational neuroscience 8, 2014.

A. I. Meso and J. M. Zanker, Speed encoding in correlation motion detectors as a consequence of spatial structure, Biological cybernetics, vol.100, pp.361-370, 2009.

O. Nestares, D. Fleet, and D. Heeger, Likelihood functions and confidence bounds for total-least-squares problems, IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000, vol.1, pp.523-530, 2000.

F. Oberhettinger, Tables of Mellin transforms, 2012.

J. A. Perrone and A. Thiele, Speed skills: measuring the visual speed analyzing properties of primate MT neurons, Nat. Neurosci, pp.526-532, 2001.

N. Priebe, C. Cassanello, and S. Lisberger, The neural representation of speed in macaque area MT/V5, J. Neurosci, vol.23, pp.5650-5661, 2003.

A. Rahman and M. Murshed, Dynamic texture synthesis using motion distribution statistics, Journal of Research and Practice in Information Technology, vol.40, p.129, 2008.

G. A. Rousselet, S. J. Thorpe, and M. Fabre-thorpe, How parallel is visual processing in the ventral pathway?, In: Trends in Cognitive Sciences, vol.8, issue.8, pp.363-370, 2004.

P. Sanz-leon, Motion clouds: model-based stimulus synthesis of naturallike random textures for the study of motion perception, In: Journal of Neurophysiology, vol.107, pp.3217-3226, 2012.

C. Simoncini, More is not always better: adaptive gain control explains dissociation between perception and action, Nature Neurosci, vol.15, pp.1596-1603, 2012.

A. T. Smith and G. K. Edgar, The influence of spatial frequency on perceived temporal frequency and perceived speed, In: Vision Res, vol.30, pp.1467-1474, 1990.

M. A. Smith, N. Majaj, and J. A. Movshon, Dynamics of Pattern Motion Computation, Dynamics of Visual Motion Processing: Neuronal, Behavioral and Computational Approaches, pp.55-72, 2010.

P. L. Smith, Stochastic dynamic models of response time and accuracy: A foundational primer, Journal of mathematical psychology, vol.44, pp.408-463, 2000.

G. Sotiropoulos, A. R. Seitz, and P. Serì, Contrast dependency and prior expectations in human speed perception, Vision Research 97.0, pp.16-23, 2014.

A. A. Stocker and E. P. Simoncelli, Noise characteristics and prior expectations in human visual speed perception, Nature Neuroscience, vol.9, pp.578-585, 2006.

P. Thompson, Perceived rate of movement depends on contrast, Vision research 22.3, pp.377-380, 1982.

P. Thompson, K. Brooks, and S. T. Hammett, Speed can go up as well as down at low contrast: Implications for models of motion perception, Vision research 46, vol.6, pp.782-786, 2006.

M. Unser, P. D. Tafti, and A. Amini, A Unified Formulation of Gaussian Versus Sparse Stochastic Processes-Part II: Discrete-Domain Theory, IEEE Transactions on Information Theory, vol.60, issue.5, pp.3036-3051, 2014.

M. Unser and P. Tafti, An Introduction to Sparse Stochastic Processes, vol.367, 2014.

M. Unser, P. D. Tafti, and Q. Sun, A unified formulation of Gaussian versus sparse stochastic processes-Part I: Continuous-domain theory, Information Theory, pp.1945-1962, 2014.

J. Vacher, Biologically Inspired Dynamic Textures for Probing Motion Perception, Advances in Neural Information Processing Systems, pp.1909-1917, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225867

K. Van and G. Nicolaas, Stochastic processes in physics and chemistry, vol.1, 1992.

B. Vintch and J. L. Gardner, Cortical correlates of human motion perception biases, The Journal of Neuroscience, vol.34, pp.2592-2604, 2014.

L. Y. Wei and S. Lefebvre, State of the Art in Example-based Texture Synthesis, Eurographics 2009, State of the Art Report, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00606853

X. Wei, A. A. Stocker-;-p, and . Bartlett, Efficient coding provides a direct link between prior and likelihood in perceptual Bayesian inference, Advances in Neural Information Processing Systems, pp.1313-1321, 2012.

Y. Weiss and D. J. Fleet, Velocity likelihoods in biological and machine vision, Probabilistic Models of the Brain: Perception and Neural Function, pp.81-100, 2001.

Y. Weiss, E. P. Simoncelli, and E. H. Adelson, Motion illusions as optimal percepts, Nature Neuroscience, vol.5, pp.598-604, 2002.

F. A. Wichmann and N. J. Hill, The psychometric function: I. Fitting, sampling, and goodness of fit, Attention, Perception, & Psychophysics 63, vol.8, pp.1293-1313, 2001.

G. S. Xia, Synthesizing and Mixing Stationary Gaussian Texture Models, SIAM Journal on Imaging Sciences, issue.1, pp.476-508, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988761

R. A. Young and R. M. Lesperance, The gaussian derivative model for spatialtemporal vision: II. Cortical data, Spatial vision 14.3, pp.321-390, 2001.

L. Yuan, Synthesizing dynamic texture with closed-loop linear dynamic system, Computer Vision-ECCV, pp.603-616, 2004.

, Using Proposition 9, it is possible to obtain the parametrization of bandwidth prevalent in manipulations used in visual psychophysics experiments