H. K. Allen, J. Trachsel, T. Looft, and T. A. Casey, Finding alternatives to antibiotics, Ann. N. Y. Acad. Sci, vol.1323, pp.91-100, 2014.

D. I. Andersson, D. Hughes, and J. Z. Kubicek-sutherland, Mechanisms and consequences of bacterial resistance to antimicrobial peptides, Drug Resist. Updat, vol.26, pp.43-57, 2016.

L. Aureli, M. Gioia, I. Cerbara, S. Monaco, G. Fasciglione et al., Structural bases for substrate and inhibitor recognition by matrix metalloproteinases, Curr. Med. Chem, vol.15, pp.2192-2222, 2008.

V. M. Barrocal, M. T. García-cubero, G. González-benito, and M. Coca, Production of biomass by Spirulina maxima using sugar beet vinasse in growth media, N. Biotechnol, vol.27, pp.851-856, 2010.

M. M. Bradford, A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Chem, vol.72, pp.248-254, 1976.

J. Carrasco-castilla, A. J. Hernández-Álvarez, C. Jiménez-martínez, and . Jacinto-hernández,

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

C. Alaiz, M. Girón-calle, J. Vioque, J. Dávila-ortiz, and G. , Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates, Food Chem, vol.135, pp.1789-1795, 2012.

T. Chattuwatthana and E. Okello, Anti-collagenase, anti-elastase and antioxidant activities of Pueraria candollei var. mirifica root extract and Coccinia grandis fruit juice extract: an in vitro study, European J. Med. Plants, vol.5, pp.318-327, 2015.

C. A. Christofoletti, J. P. Escher, J. E. Correia, J. F. Marinho, and C. S. Fontanetti, Sugarcane vinasse: Environmental implications of its use, Waste Manag, vol.33, pp.2752-2761, 2013.

L. Cortez, P. Magalhães, and J. Happi, Principais subprodutos da agroin-dústria canavieira e sua valorização, Rev. Bras. Energ, vol.2, pp.1-17, 1992.

R. J. De-castro and H. H. Sato, Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries, Food Res. Int, vol.74, pp.185-198, 2015.

R. R. Santos, O. Araújo, Q. F. De, J. L. De-medeiros, and R. M. Chaloub, Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse, Bioresour. Technol, vol.204, pp.38-48, 2016.

, Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, European Committee on Antimicrobial Susceptibility Testing, vol.9, pp.1-7, 2003.

L. T. Fuess and M. L. Garcia, Implications of stillage land disposal: A critical review on the impacts of fertigation, J. Environ. Manage, vol.145, pp.210-229, 2014.

E. Haney and R. Hancock, Peptide design for antimicrobial and immunomodulatory applications, Biopolymers, vol.100, pp.572-583, 2014.

M. Hayes, Biological activities of proteins and marine-derived peptides from byproducts and seaweeds, in: marine proteins and peptides, pp.139-165, 2013.

W. ;. Horwitz and G. Latimer, Official methods of analysis, 2005.

N. T. Hoyle and J. H. Merritt, Quality of Fish Protein Hydrolysates from Herring Version postprint Comment citer ce document, 1994.

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.76-79, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

I. Jang and S. J. Park, A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4. Fish, Aquat. Sci, vol.19, p.37, 2016.

K. H. Kang, B. M. Ryu, S. K. Kim, Z. J. Qian, and S. K. Kim, Characterization of growth and protein contents from microalgae Navicula incerta with the investigation of antioxidant activity of enzymatic hydrolysates, Food Sci. Biotechnol, vol.20, pp.183-191, 2011.

N. H. Kim, S. H. Jung, J. Kim, S. H. Kim, H. J. Ahn et al., Purification of an iron-chelating peptide from Spirulina protein hydrolysates, J. Korean Soc. Appl. Biol. Chem, vol.57, pp.91-95, 2014.

K. J. Lee, Y. C. Oh, W. K. Cho, and J. Y. Ma, Antioxidant and anti-inflammatory activity determination of one hundred kinds of pure chemical compounds using offline and online screening hplc assay, 2015.

R. M. Leme and J. E. Seabra, Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry, Energy, vol.119, pp.754-766, 2017.

C. R. Lisboa, A. M. Pereira, J. Alberto, and V. Costa, Biopeptides with antioxidant activity extracted from the biomass of Spirulina sp. LEB 18, African J. Microbiol. Res, vol.10, pp.79-86, 2016.

E. Maestri, M. Marmiroli, and N. Marmiroli, Bioactive peptides in plant-derived foodstuffs, J. Proteomics, vol.147, pp.140-155, 2015.

S. Nitayavardhana, K. Issarapayup, P. Pavasant, and S. K. Khanal, Production of protein-,rich fungal biomass in an airlift bioreactor using vinasse as substrate, Bioresour. Technol, vol.133, pp.301-306, 2013.

C. D. Norzagaray-valenzuela, A. Valdez-ortiz, L. M. Shelton, M. Jiménez-edeza, J. Rivera-lópez et al., Residual biomasses and protein hydrolysates of three green microalgae species exhibit antioxidant and antiaging activity, J. Appl. Phycol, vol.29, pp.189-198, 2017.

R. Nurdiani, T. Vasiljevic, T. Yeager, K. T. Donkor, N. Singh et al., Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products, Eur. Food Res. Technol, 2016.

C. A. Oliveira, . De, A. Aparecida, D. O. Campos, S. Machado et al., Version postprint Comment citer ce document, 2013.

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Spirulina. Assoc. Bras. Nutr, vol.7527, pp.52-59

C. A. Ovando, J. C. Carvalho, V. De, . De-melo, G. Pereira et al., Functional properties and health benefits of bioactive peptides derived from Spirulina: A review, Food Rev. Int, vol.34, pp.34-51, 2018.

G. Ozdemir, N. Ulku-karabay, M. C. Dalay, and B. Pazarbasi, Antibacterial activity of volatile component and various extracts of Spirulina platensis, Phyther. Res, vol.18, pp.754-757, 2004.

P. Perumal and V. P. Pandey, Antimicrobial peptides : The role of hydrophobicity in the alpha helical structure, J. Pharm. Pharmacogn. Res, vol.1, pp.39-53, 2013.

D. A. Phoenix, S. R. Dennison, and F. Harris, Antimicrobial Peptides, 2013.

C. Plaza, Tecnologia da Digestão Anaeróbia da Vinhaça e Desenvolvimento Sustentável Tecnologia da Digestão Anaeróbia da Vinhaça e Desenvolvimento Sustentável, 1999.

M. R. Prado, C. Boller, R. G. Zibetti, D. De-souza, L. L. Pedroso et al., Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir, vol.108, pp.29-33, 2016.

N. N. Ramirez, M. Farenzena, and J. O. Trierweiler, Growth of microalgae Scenedesmus sp in ethanol vinasse, Brazilian Arch. Biol. Technol, vol.57, pp.630-635, 2014.

E. W. Rice, R. B. Baird, and L. S. Clesceri, Standard method for the examination of water and wastewater, 2012.

V. Robles-gonzález, J. Galíndez-mayer, N. Rinderknecht-seijas, and H. Poggi-varaldo, Treatment of mezcal vinasses: a review, J Biotechnol, vol.157, pp.521-546, 2012.

H. Santana, C. R. Cereijo, V. C. Teles, R. C. Nascimento, M. S. Fernandes et al., Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization, Bioresour. Technol, vol.228, pp.133-140, 2017.

F. D. Silva, C. A. Rezende, D. C. Rossi, E. Esteves, F. H. Dyszy et al., Structure and mode of action of microplusin, 2009.

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Rhipicephalus (Boophilus) microplus, J. Biol. Chem, vol.284, pp.34735-34746

B. P. Singh, S. Vij, and S. Hati, Functional significance of bioactive peptides derived from soybean, Peptides, vol.54, pp.171-179, 2014.

Y. Sun, R. Chang, Q. Li, and B. Li, Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis, Eur. Food Res. Technol, vol.242, pp.685-692, 2016.

N. D. Udeshi, P. Mertins, T. Svinkina, and S. A. Carr, Large-scale identification of ubiquitination sites by mass spectrometry, Nat. Protoc, vol.8, 1950.

J. Villén and S. P. Gygi, The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry, Nat. Protoc, vol.3, pp.1630-1638, 2008.

T. S. Vo, B. Ryu, and S. K. Kim, Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima, J. Funct. Foods, vol.5, pp.1336-1346, 2013.

T. Wang, R. Jónsdóttir, and G. Ólafsdóttir, Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds, Food Chem, vol.116, pp.240-248, 2009.

Z. Wang and X. Zhang, Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth, Food Funct, vol.7, pp.781-788, 2016.

L. Wei, H. Che, Y. Han, J. Lv, L. Mu et al., The first anionic defensin from amphibians, Amino Acids, vol.47, pp.1301-1308, 2015.

H. Wu, Z. Liu, Y. Zhao, and M. Zeng, Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein, Food Res. Int, vol.48, pp.435-441, 2012.

J. Yu, Y. Hu, M. Xue, Y. Dun, S. Li et al., Purification and Identification of Antioxidant Peptides from Enzymatic Hydrolysate of Spirulina platensis, J. Microbiol. Biotechnol, vol.26, pp.1216-1223, 2016.

L. Zhang and R. L. Gallo, Antimicrobial peptides, Curr. Biol, vol.26, pp.14-19, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01959821

, Version postprint Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, Comment citer ce document

G. E. Montalvo, . Thomaz-soccol, . Vandenberghe, . Carvalho, C. Faulds et al., Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production, Bioresource Technology, vol.273, pp.103-113, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01911957

, High titers of Arthrospira maxima biomass cultivated at Laboratory and pilot scale ? Microalgae produced using sugarcane vinasse with BOD and COD reduction ? Peptide fractions obtained through biomass enzymatic hydrolysis ? Antioxidant, antimicrobial, anti-inflammatory