H. Beinert, Iron-sulfur proteins: ancient structures, still full of surprises, J. Biol. Inorg. Chem. JBIC Publ. Soc. Biol. Inorg. Chem, vol.5, pp.2-15, 2000.
DOI : 10.1007/s007750050002

E. J. Milner-white, R. , and M. J. , Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests), Orig. Life Evol. Biosphere J. Int. Soc. Study Orig. Life, vol.35, pp.19-27, 2005.
DOI : 10.1007/s11084-005-4582-7

H. Beinert and R. Sands, Studies on mitochondria and submitochondrial particules by paramagnetic resonance (EPR) spectroscopy, Biochem. Biophys. Res. Commun, 1960.

C. Andreini, A. Rosato, and L. Banci, The Relationship between Environmental Dioxygen and Iron-Sulfur Proteins Explored at the Genome Level, PloS One, vol.12, p.171279, 2017.
DOI : 10.1371/journal.pone.0171279

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0171279&type=printable

B. Py and F. Barras, Building Fe-S proteins: bacterial strategies, Nat. Rev. Microbiol, vol.8, pp.436-446, 2010.
DOI : 10.1038/nrmicro2356

R. Malkin and J. C. Rabinowitz, The reconstitution of clostridial ferredoxin, Biochem. Biophys. Res. Commun, vol.23, pp.822-827, 1966.
DOI : 10.1016/0006-291x(66)90561-4

K. S. Hagen, J. G. Reynolds, and R. H. Holm, Definition of reaction sequences resulting in self-assembly of [Fe4S4(SR)4]2-clusters from simple reactants, J. Am. Chem. Soc, vol.103, pp.4054-4063, 1981.

B. Roche, L. Aussel, B. Ezraty, P. Mandin, B. Py et al., , 2013.

, Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity, Biochim. Biophys. Acta, vol.1827, pp.455-469

E. S. Boyd, K. M. Thomas, Y. Dai, J. M. Boyd, and F. W. Outten, Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway, Biochemistry (Mosc.), vol.53, pp.5834-5847, 2014.

B. Blanc, C. Gerez, and S. Ollagnier-de-choudens, Assembly of Fe/S proteins in bacterial systems: Biochemistry of the bacterial ISC system, Biochim. Biophys. Acta, vol.1853, pp.1436-1447, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166873

J. J. Braymer and R. Lill, Iron-sulfur cluster biogenesis and trafficking in mitochondria, J. Biol. Chem, vol.292, pp.12754-12763, 2017.

J. Balk and T. A. Schaedler, Iron cofactor assembly in plants, Annu. Rev. Plant Biol, vol.65, pp.125-153, 2014.

W. Pelzer, U. Mühlenhoff, K. Diekert, K. Siegmund, G. Kispal et al., , 2000.

, Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron-sulfur proteins, FEBS Lett, vol.476, pp.134-139

A. Kaut, H. Lange, K. Diekert, G. Kispal, and R. Lill, Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function, J. Biol. Chem, vol.275, pp.15955-15961, 2000.

A. D. Sheftel, C. Wilbrecht, O. Stehling, B. Niggemeyer, H. Elsässer et al., The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for, Mol. Biol. Cell, vol.23, pp.1157-1166, 2012.

D. Vinella, C. Brochier-armanet, L. Loiseau, E. Talla, and F. Barras, Ironsulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-type carriers, PLoS Genet, vol.5, p.1000497, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00698313

L. Loiseau, C. Gerez, M. Bekker, S. Ollagnier-de-choudens, B. Py et al., ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in Escherichia coli, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.13626-13631, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00374797

K. Bych, S. Kerscher, D. J. Netz, A. J. Pierik, K. Zwicker et al., The iron-sulphur protein Ind1 is required for effective complex I assembly, EMBO J, vol.27, pp.1736-1746, 2008.

A. D. Sheftel, O. Stehling, A. J. Pierik, D. J. Netz, S. Kerscher et al., Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I, Mol. Cell. Biol, vol.29, pp.6059-6073, 2009.

J. M. Boyd, A. J. Pierik, D. J. Netz, R. Lill, and D. M. Downs, Bacterial ApbC can bind and effectively transfer iron-sulfur clusters, Biochemistry (Mosc.), vol.47, pp.8195-8202, 2008.

J. M. Boyd, J. A. Lewis, J. C. Escalante-semerena, and D. M. Downs, Salmonella enterica requires ApbC function for growth on tricarballylate: evidence of functional redundancy between ApbC and IscU, J. Bacteriol, vol.190, pp.4596-4602, 2008.

M. T. Rodríguez-manzaneque, J. Tamarit, G. Bellí, J. Ros, and E. Herrero, Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes, Mol. Biol. Cell, vol.13, pp.1109-1121, 2002.

A. Picciocchi, C. Saguez, A. Boussac, C. Cassier-chauvat, C. et al., CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathione-ligated, Biochemistry (Mosc.), vol.46, pp.15018-15026, 2007.

S. Bandyopadhyay, F. Gama, M. M. Molina-navarro, J. M. Gualberto, R. Claxton et al., Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of, EMBO J, vol.27, pp.1122-1133, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01332174

S. Angelini, C. Gerez, S. Ollagnier-de-choudens, Y. Sanakis, M. Fontecave et al., NfuA, a new factor required for maturing Fe/S proteins in Escherichia coli under oxidative stress and iron starvation conditions, J. Biol. Chem, vol.283, pp.14084-14091, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00379514

S. Bandyopadhyay, S. G. Naik, I. P. O'carroll, B. Huynh, D. R. Dean et al., A proposed role for the Azotobacter vinelandii NfuA protein as an intermediate iron-sulfur cluster carrier, J. Biol. Chem, vol.283, pp.14092-14099, 2008.

W. Tong, G. N. Jameson, B. H. Huynh, and T. A. Rouault, Subcellular compartmentalization of human Nfu, an iron-sulfur cluster scaffold protein, and its ability to assemble a, Proc. Natl. Acad. Sci. U. S. A, vol.100, pp.9762-9767, 2003.

S. Léon, B. Touraine, C. Ribot, J. Briat, and S. Lobréaux, Iron-sulphur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana, Biochem. J, vol.371, pp.823-830, 2003.

A. A. Mashruwala, Y. Y. Pang, Z. Rosario-cruz, H. K. Chahal, M. A. Benson et al., Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus, Mol. Microbiol, vol.95, pp.383-409, 2015.

A. Navarro-sastre, F. Tort, O. Stehling, M. A. Uzarska, J. A. Arranz et al., A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins, Am. J. Hum. Genet, vol.89, pp.656-667, 2011.

H. Gao, S. Subramanian, J. Couturier, S. G. Naik, S. Kim et al., Arabidopsis thaliana Nfu2 accommodates [2Fe-2S] or [4Fe-4S] clusters and is competent for in vitro maturation of chloroplast, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268928

D. Brancaccio, A. Gallo, M. Mikolajczyk, K. Zovo, P. Palumaa et al., Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery, J. Am. Chem. Soc, vol.136, pp.16240-16250, 2014.

L. K. Beilschmidt, S. Ollagnier-de-choudens, M. Fournier, I. Sanakis, M. Hograindleur et al., ) ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo, Nat. Commun, vol.8, p.15124, 2017.

B. Schilke, C. Voisine, H. Beinert, C. , and E. , Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A, vol.96, pp.10206-10211, 1999.

T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura et al., Construction of Escherichia coli K-12 inframe, single-gene knockout mutants: the Keio collection, Mol. Syst. Biol, vol.2, p.8, 2006.

S. Ollagnier-de-choudens, L. Nachin, Y. Sanakis, L. Loiseau, F. Barras et al., SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron-sulfur cluster assembly, J. Biol. Chem, vol.278, pp.17993-18001, 2003.

P. A. Jordan, Y. Tang, A. J. Bradbury, A. J. Thomson, and J. R. Guest, Biochemical and spectroscopic characterization of Escherichia coli aconitases (AcnA and AcnB), Biochem. J. 344 Pt, vol.3, pp.739-746, 1999.

G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, A bacterial two-hybrid system based on a reconstituted signal transduction pathway, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.5752-5756, 1998.

S. Ollagnier-de-choudens, L. Nachin, Y. Sanakis, L. Loiseau, F. Barras et al., SufA from Erwinia chrysanthemi. Characterization of a scaffold protein required for iron-sulfur cluster assembly, J. Biol. Chem, vol.278, pp.17993-18001, 2003.

H. Beinert, Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins, Anal. Biochem, vol.131, pp.373-378, 1983.

W. W. Fish, Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples, Methods Enzymol, vol.158, pp.357-364, 1988.

A. Vogel, Textbook of Quantitative Chemical Analysis, 1989.

P. R. Gardner and I. Fridovich, Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical, J. Biol. Chem, vol.267, pp.8757-8763, 1992.

L. C. Seaver and J. A. Imlay, Are respiratory enzymes the primary sources of intracellular hydrogen peroxide?, J. Biol. Chem, vol.279, pp.48742-48750, 2004.
DOI : 10.1074/jbc.m408754200

URL : http://www.jbc.org/content/279/47/48742.full.pdf

L. M. Guzman, D. Belin, M. J. Carson, and J. Beckwith, Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter, J. Bacteriol, vol.177, pp.4121-4130, 1995.
DOI : 10.1128/jb.177.14.4121-4130.1995

URL : https://jb.asm.org/content/177/14/4121.full.pdf