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Abstract 
The spread of antimicrobial resistance has become a serious public health concern, making 

once treatable diseases deadly again and undermining breakthrough achievements of 

modern medicine 1,2. Drug combinations can aid in fighting multi-drug resistant (MDR) 

bacterial infections, yet, are largely unexplored and rarely used in clinics. To identify general 

principles for antibacterial drug combinations and understand their potential, we profiled 

~3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives 

in 6 strains from three Gram-negative pathogens, Escherichia coli, Salmonella Typhimurium 

and Pseudomonas aeruginosa. Despite their phylogenetic relatedness, more than 70% of 

the detected drug-drug interactions are species-specific and 20% display strain specificity, 

revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more 

common than synergies and occur almost exclusively between drugs targeting different 

cellular processes, whereas synergies are more conserved and enriched in drugs targeting 

the same process. We elucidate mechanisms underlying this dichotomy and further use our 

resource to dissect the interactions of the food additive, vanillin. Finally, we demonstrate that 

several synergies are effective against MDR clinical isolates in vitro and during Galleria 

mellonella infections with one reverting resistance to the last-resort antibiotic, colistin. 
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Main text
To study the characteristics and conservation of drug-drug interactions in bacteria, we 

selected three γ-proteobacterial species, E. coli, Salmonella enterica serogroup 

Typhimurium, and P. aeruginosa, all belonging to the highest risk groups for antibiotic 

resistance 3. We used model lab strains rather than MDR isolates to derive general 

principles behind drug-drug interactions without being confounded by horizontally transferred 

antibiotic resistance elements, and to facilitate follow-up experiments and comparisons with 

results from others. To further assess whether drug responses vary between strains of the 

same species, we included two strains per species (ED Fig. 1a), probing each in up to 79 

compounds alone and in pairwise combinations. The compounds comprised 59% antibiotics 

(all major drug classes), 23% human-targeted drugs and food additives, most with reported 

antibacterial/adjuvant activity 4,5, and 18% of other compounds with known bacterial targets 

or genotoxic effects – e.g. proton motive force (PMF) inhibitors or oxidative damage agents, 

due to their potential relevance for antibiotic activity and/or uptake 6,7 (ED Fig. 1a; 

Supplementary Table 1). Altogether, we profiled up to 2,883 pairwise drug combinations in 

each of the 6 strains (17,050 total). We assessed each drug combination in a 4x4 tailored 

dose matrix (Methods, Supplementary Table 1), using optical density as growth readout, and 

calculated fitness as the growth ratio between drug treated and untreated cells (ED Fig. 1-2, 

Methods). All experiments were done at least twice and on average 4x, with good replicate 

correlation (average Pearson Correlation =0.93; ED Fig. 3a-b). 

We quantified all drug-drug interactions using the Bliss independence model (ED Fig. 1b, 

Methods). Consistent with its null hypothesis, interaction scores are zero-centered for all 

species (ED Fig. 3c). From all the scores (𝜀) obtained per combination (4x4 dose matrix), we 

derived a single interaction score 𝜀 ranging from -1 to 1 (Methods). Synergies and 

antagonisms were considered significant if p-value < 0.05 (Benjamini-Hochberg corrected, 

10,000 repetitions of a two-sided Wilcoxon rank-sum test). Strong interactions had an 

additional effect size requirement for |𝜀| > 0.1, whereas weak interactions could satisfy the 

effect size threshold for one of the two strains of the same species, but be just below for the 

other (|𝜀| > 0.06; Methods). In total we detected ~19% interactions for E. coli, ~16% for S. 

Typhimurium, and ~11% for P. aeruginosa (Supplementary Table 2). This is in between the 

>70% hit rate for a limited set of antibiotics tested in E. coli 8 and the <2% for a larger set of

antifungals tested in different fungi 9. Discrepancies are likely due to: (i) drug selection 

biases, (ii) single drug concentrations used in previous studies (which increases false 

negative and positive rates), and (iii) different data analysis. For example, we observed that 

drugs lacking antibacterial activity engage in fewer interactions (ED Fig. 3e). Robbins et al. 
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screened pairwise combinations of 6 antifungals with 3,600 drugs, most of which had no 

antifungal activity 9, thus explaining the low number of interactions detected, whereas Yeh et 

al. profiled only bioactive antibiotics 8. Out of 79 drugs tested here, 69 had at least one 

interaction and a median of 5-13 interactions per drug in the different strains (ED Fig. 3f). 

Since drug combinations have not been systematically probed in bacteria before, we lacked 

a ground truth for benchmarking our dataset. To overcome this limitation, we selected 242 

combinations across the 6 strains, and created a validation set using higher-precision 8x8 

checkerboard assays (ED Fig. 4a-b, Supplementary Table 3, Methods). We used this 

validation set to both assess the performance of our interaction identification approach and 

to benchmark our screen (ED Fig. 4c-d). Overall, we had precision and recall of 91% and 

74%, respectively. The slightly lower recall can be partially explained by the larger coverage 

of drug concentration range in the validation experiments, which increases our ability to 

detect interactions (ED Fig. 5). We further confirmed 90% of all weak interactions we tested 

(n=46; Supplementary Table 3, ED Fig. 6), validating the rationale of our interaction 

identification approach. Indeed, including weak interactions in our hits contributes to higher 

recall (ED Fig. 4d). For a handful of the synergies observed between antibiotics of the same 

class (β-lactams), we confirmed the interactions using the Loewe additivity model (ED Fig. 

4e), which is more suitable for assessing interactions between drugs with the same target. 

Overall, we detected 1354 antagonistic and 1230 synergistic interactions. Although this 

suggests that the two occur with similar frequencies, antagonisms are nearly 50% more 

prevalent than synergies, when correcting for the ability to detect both types of interactions 

(Fig. 1a). This is because we can detect antagonisms only for 75% of combinations (when at 

least one individual drug inhibits growth; ED Fig. 3d, Methods), whereas synergies are 

detectable for nearly all combinations. Higher prevalence of antagonisms has also been 

reported for antifungals 10. 

Strikingly, antagonisms and synergies exhibited a clear dichotomy in our data. Antagonism 

occurred almost exclusively between drugs targeting different cellular processes, while 

synergies were also abundant for drugs of the same class or targeting the same process 

(Fig. 1b-e, ED Fig. 7). Mechanistically, antagonism could be explained by interactions at the 

drug target level, with the two inhibitors helping the cell to buffer the distinct processes 

perturbed. DNA and protein synthesis inhibitors act this way in bacteria (Fig. 1b) 11. 

Consistent with this being a broader phenomenon, in genome-wide genetic interactions 

studies in yeast, alleviating interactions (antagonisms) are enriched between essential 

genes (the targets of anti-infectives), which are part of different functional processes 12. 
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However, antagonism can also occur at the level of intracellular drug concentrations (ED 

Fig. 8a). We tested 16 antagonistic interactions of different drugs with gentamicin or 

ciprofloxacin in E. coli to investigate to what extent this occurs. Although initially detected at 

a growth inhibition level, all antagonisms held true at a killing level, with 14/16 decreasing 

the intracellular gentamicin or ciprofloxacin concentrations (ED Fig. 8b). In several cases 

tested, this likely occurred because the second drug either decreased the PMF-energized 

uptake of gentamicin or increased AcrAB-TolC-dependent efflux of ciprofloxacin, as 

antagonisms were neutralized in the respective mutant backgrounds (ED Fig. 8c). Overall, 

our results suggest that a large fraction of antagonisms is due to modulation of intracellular 

drug concentrations, rather than due to direct interactions of the primary drug targets (ED 

Fig. 8d-e). 

Unlike antagonistic interactions, synergies often occurred between drugs targeting the same 

cellular process (Fig. 1b-e, ED Fig. 7). In fact, synergies are significantly enriched within 

drugs of the same category across all three species (p-value < 10-16, Fischer’s exact test), 

given that there are ~15-fold more possible drug combinations across drug categories in our 

dataset. Mechanistically, targeting the same functional process at different steps could tease 

apart its redundancy. For example, β-lactams have different affinities to the numerous and 

often redundant penicillin-binding-proteins (PBPs), likely explaining the many synergies 

between them (Fig. 1b, ED Fig. 4e & 7a-b). 

Like antagonisms, synergies can also occur due to modulation of intracellular drug 

concentrations. Consistent with a general permeabilization role of membrane-targeting 

compounds in many organisms 9,13,14, and with drug uptake being a major bottleneck for 

Gram-negative pathogens, one fourth of all detected synergies contain at least one out of 

eight membrane-targeting drugs in our screen (Wilcoxon rank-sum test, p-value=0.044). 

However, membrane-targeting compounds account also for ~16% of antagonisms, 

suggesting that perturbations in membrane integrity can also decrease intracellular drug 

concentrations. Consistently, benzalkonium decreases the intracellular concertation of both 

gentamicin and ciprofloxacin, likely because it interferes with their active import in the cell 

(ED Fig. 8b-c). 

We next examined the conservation of drug-drug interactions. Interactions within species 

were highly correlated (Fig. 2a, ED Fig. 9a-b): 53-76%, depending on the species (Fig. 2b). 

Conservation is actually higher (68-87%, and on average 80%), if we disregard the non-

comparable interactions for which the concentration range tested preclude us from detecting 

synergy or antagonism for both strains (Fig. 2b, ED Fig. 3d). High conservation of drug-drug 
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interactions within species is consistent with the finding that such interactions are generally 

robust to simple genetic perturbations 15. Despite this overall high-degree conservation 

within species, 13-32% of the interactions were strain-specific, with the majority being 

neutral in the second strain. Very few drug combinations synergized for one strain and 

antagonized for the other (16 interactions), but such strain differences held in our validation 

set (Supplementary Table 2). 

While conservation is relatively high within species, it is very low across species (Fig. 2c, ED 

Fig. 9c). The majority (70%) of interactions occurred in one species, and only 5% were 

conserved in all three phylogenetically close-related species. Since conservation is much 

higher at the single-drug level for the three species (sharing resistance/sensitivity to 73% of 

the drugs; Supplementary Table 1, Methods), this indicates that drug combinations can 

impart species specificity to the drug action. Such specificities can be beneficial for creating 

narrow spectrum therapies with low collateral damage, by using synergies specific for 

pathogens and antagonisms specific for abundant commensals. 

Moreover, we found that synergies are significantly more conserved than antagonisms (Fig. 

2d), despite being less prevalent (Fig. 1a). This is presumably because: i) synergies are 

enriched between drugs of the same category, and interactions within functional processes 

are conserved across evolution 16; ii) membrane-targeting drugs have a general potentiation 

effect in Gram-negative bacteria; and iii) antagonisms often depend on drug import/uptake 

(ED Fig. 8), which are controlled by less conserved envelope machineries. 

Exploring the network of conserved drug-drug interactions across the three species (ED Fig. 

9d) exposed potential Achilles heels of Gram-negative bacteria, such as the strong synergy 

of colistin with macrolides 17, but also revealed that known antibiotic classes often behave 

non-uniformly. For example, the well-known synergy between β-lactams and 

aminoglycosides is confined to potent aminoglycosides used in our screen (amikacin and 

tobramycin) and β-lactams that target specifically the cell-division related PBPs (piperacillin, 

aztreonam, cefotaxime), in agreement with previous reports 18. To address whether pairwise 

drug interactions are Mode of action (MoA)-driven (i.e. drug classes interacting purely 

synergistic or antagonistic with each other) 8, we calculated a monochromaticity index (MI) 

for all drug category pairs, across all species (Methods). For highly monochromatic category 

pairs, MI approaches 1 and -1 for antagonism and synergy, respectively. MI is overall high, 

especially between well-defined antibiotic classes. Yet, a number of them, including β-

lactams, tetracyclines and macrolides, have mixed antagonisms and synergies with other 
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antibiotic classes (ED Fig. 9e). While β-lactams have diverse affinities to their multiple PBP 

targets (potentially explaining the mixed interactions with other classes), the same does not 

apply to protein synthesis inhibitors, which have unique targets. In this case, non-uniform 

class behavior may be due to different chemical properties of the class members, and thus 

different dependencies on uptake and efflux systems. Aggregating the MI per drug category 

reinforced the view that broader categories exhibit less concordant interactions (ED Fig. 9f). 

Interestingly, human-targeted drugs were the category exhibiting more synergies, supporting 

the hypothesis that many human-targeted drugs may act as adjuvants. 

Since antibiotic classes interacted largely monochromatically, as expected, clustering drugs 

according to their interactions recapitulated the class groupings (ED Fig. 10). For example, 

cell-wall inhibitors grouped together, with further subdivisions being reflective of target 

specificity. Yet, exceptions were also evident, such as the macrolides, which split, with 

azithromycin, the only dibasic macrolide separating from its class co-members and 

clustering with two other basic antibiotics, bleomycin and phleomycin. Azithromycin interacts 

with and crosses the OM of Gram-negative bacteria distinctly to other macrolides 17,19, and 

has also different binding kinetics to the peptide exit tunnel of the 50S ribosomal subunit 20. 

For drugs with unknown or less-well defined targets, clustering hinted towards possible 

MoA’s. Among them, we selected the flavoring compound vanillin, which clusters together 

with the structurally related acetylsalicylic acid (aspirin). Salicylate and aspirin induce the 

expression of the major efflux pump in enterobacteria, AcrAB-TolC via binding and 

inactivating the transcriptional repressor MarR 21 (Fig. 3a). Consistent with a similar action, 

vanillin treatment increased AcrA protein levels in E. coli, due to marA overexpression (Fig. 

3b-c). Higher AcrA levels upon vanillin or aspirin treatment led to higher chloramphenicol 

and ciprofloxacin MICs (Fig. 3d-e). As previously reported for salicylate 22, vanillin exerts an 

additional minor effect on drug resistance in a MarR/A-independent manner, presumably via 

the MarA homologue, Rob (Fig. 3c-e). 

To test whether detected interactions are relevant for resistant isolates, we selected seven 

strong and conserved synergies, comprising antibiotics, human-targeted drugs or food 

additives, and assessed their efficacy against six MDR and XDR E. coli and Klebsiella 

pneumoniae clinical isolates. All strains were recovered from infected patients, belonging to 

successfully spread clonal lineages harboring extended spectrum β-lactamase (ESBL) 

resistance and various highly prevalent carbapenemases  23,24. One K. pneumoniae strain 

(929) is also resistant to the last-resort antibiotic, colistin, due to a chromosomal mutation

(Supplementary Table 4). All drug pairs acted synergistically in most of the strains tested 
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(Fig. 4a, ED Fig. 11a). We further tested colistin-clarithromycin and spectinomycin-vanillin, 

with an established infection model for evaluating antibacterial activity, that of the greater 

wax moth, Galleria mellonella. Both combinations acted also synergistically in vivo by 

increasing Galleria mellonella survival during infection (Fig. 4b & ED Fig. 11b). 

The strongest of these synergies is between colistin and different macrolides (Fig. 4, ED Fig. 

11). Although other polymyxins are known to help macrolides cross the OM of Gram-

negative bacteria 17, this particular synergy occurred at low colistin concentration (< 0.3 

µg/ml) and was active even for the intrinsically colistin-resistant strain (Fig. 4, K. pneumoniae 

929), implying that macrolides may also potentiate colistin’s action via a yet unknown 

mechanism. Similar resensitization of colistin-resistant pathogens to colistin by macrolides 

was recently reported for plasmid-borne colistin resistance 25, indicating that this synergy is 

independent of the resistance mechanism. In addition to antibiotic pairs, combinations of 

human-targeted drugs or food additives with antibiotics were also effective against MDR 

isolates, even if  former did not have antibacterial activity on their own (ED Fig. 11). 

Finally, vanillin potentiated the activity of spectinomycin in E. coli MDR isolates. This was 

intriguing, since vanillin antagonizes many other drugs, including other aminoglycosides 

(Supplementary Table 2). We confirmed that this interaction is specific to spectinomycin and 

vanillin, and not to other aminoglycosides or aspirin, and thus independent of the vanillin 

effect on AcrAB-TolC (ED Fig. 12a-c). We then probed a genome-wide E. coli gene 

knockout library 26 to identify mutants that abrogate the vanillin-spectinomycin interaction, 

but do not influence the amikacin (another aminoglycoside)-vanillin interaction. One of the 

top hits was mdfA, which encodes for a Major Facilitator Superfamily (MFS) transporter, 

exporting both electrogenic and electroneutral compounds 27 (ED Fig. 12c). Consistent with 

MdfA modulating spectinomycin uptake, ΔmdfA cells were more resistant to spectinomycin 

and not responsive to vanillin (ED Fig. 12d), whereas cells overexpressing mdfA were more 

sensitive to spectinomycin (ED Fig. 12e, not visible at the MIC level in ED Fig. 12d), as 

previously reported 28, with vanillin further exacerbating this effect (ED Fig. 12d). Vanillin 

addition also increased the intracellular spectinomycin concentration in an mdfA-dependent 

manner (ED Fig. 12e). At this point, it is unclear how MdfA, which is known to export 

compounds out of the cell, facilitates spectinomycin import in the cell. However, the 

phylogenetic occurrence of mdfA is concordant with the species-specificity of this interaction, 

as we detected the synergy in E. coli and S. Typhimurium, but not in the phylogenetically 

more distant, P. aeruginosa and K. pneumoniae isolates, which lack mdfA. This synergy 

underlines the importance of exploring the role of food additives in combinatorial therapies 5. 
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In summary, we generated a comprehensive resource of pairwise drug combinations in 

Gram-negative bacteria, illuminating key principles of drug-drug interactions and providing a 

framework for assessing their conservation across organisms or individuals (see 

Supplementary Discussion). Such information can nucleate equivalent screens in other 

microbes, studies investigating the underlying mechanism of pairwise drug combinations 
11,15,29 and computational predictions of their outcomes 30,31. Moreover, some of the general 

principles of drug-drug interactions may hold true beyond anti-infectives and microbes 32. For 

antibacterial drug therapies, our study highlights the promise that non-antibiotic drugs hold 

as adjuvants, offers a new path for narrow spectrum therapies and effective synergies 

against MDR clinical isolates (see Supplementary Discussion). Further experimentation is 

required to address whether such synergies have clinical relevance. 
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Figure legends 
Figure 1: Principles of drug-drug interaction networks. a) Antagonism is more prevalent 

than synergy. Fraction of observed over detectable interactions in the 6 strains. We detect 

more antagonistic (1354) than synergistic (1230) interactions, although our ability to detect 

antagonisms is lower than synergy: 12,778 versus 16,920 combinations. b & d) Drug-drug 

interaction networks in E. coli. Nodes represent either drug categories (b) or drugs grouped 

according to the general cellular process they target (d). Node color is as ED Fig. 1a and 

node size reflects the number of drugs within category. Edges represent synergy (blue) and 

antagonism (orange); thickness reflects number of interactions. Interactions between drugs 

of the same category/general cellular target are represented by self-interacting edges. 

Conserved interactions, including weak, are presented. c & e) Antagonisms occur almost 

exclusively between drugs belonging to different categories (c) or targeting different cellular 

processes (e), whereas synergies are also abundant between drugs within the same 

category (c) or targeting the same process (e). Quantification and Chi-squared test p-values 

from E. coli drug-drug interactions are shown in b and d, respectively. 

Figure 2: Drug-drug interaction conservation. a) Drug-drug interactions are conserved in 

E. coli. Scatter plot of interaction scores from the two E. coli strains; significant interactions

for at least one of the strains are shown. Dark blue: strong and conserved interactions in 

both strains; light blue: strong interactions in one strain and concordant behavior in other 

(weak and conserved); grey: interactions occurring exclusively in one strain or conflicting 

between strains (non-conserved). R denotes the Pearson correlation, n the number 

interactions plotted. b) Drug-drug interactions are highly conserved within all three species. 

Colors as in a; non-comparable refers to combinations that have significantly different single 

drug dose responses between strains (Methods). c) Drug-drug interactions are largely 

species-specific; n = total number of interactions; nc = conflicting interactions between 

species (synergy in one species, antagonism in other), not accounted for in Venn diagram. 

d) Synergies are more conserved than antagonisms. Mosaic plots and Chi-squared test p-

values show the quantification of synergy and antagonism among conserved (fully and 

partially) and non-conserved interactions between species. 

Figure 3: Vanillin induces a multi-antibiotic-resistance (mar) phenotype. a) Vanillin and 

aspirin (acetylsalicylic acid) have similar drug-drug interaction profiles (see ED Fig. 10), 

suggesting similar MoA’s. A schematic representation of the mar response induction via 

deactivation of the MarR repressor by salicylate/aspirin 21 is illustrated. b) Vanillin increases 

AcrA levels in a marA-dependent manner. A representative immunoblot of exponentially 



10 

growing cells, untreated or after treatment with vanillin (150µg/ml) or aspirin (500µg/ml) is 

shown - loading controlled by cell density and constitutively expressed RecA. Barplots depict 

AcrA protein level quantification (all western blots available in Supplementary Fig. 1); c) 

marA expression levels upon vanillin (150µg/ml) or aspirin (500µg/ml) treatment are stronger 

in wildtype than in ΔmarR mutant. Expression is measured by RT-qPCR and normalized to 

no-drug treatment in wildtype; d & e) Vanillin (150 µg/ml) and aspirin (500µg/ml) increase 

the MIC of chloramphenicol (d) or ciprofloxacin (e). Antagonism is weaker and abolished in 

ΔmarA and ΔacrA mutants, respectively. n = number of independent biological replicates 

and error bars depict standard deviation (b-e) 

Figure 4: Potent synergistic combinations against Gram-negative MDR clinical 

isolates. a) In vitro synergies, shown as 8x8 checkerboards, for 3 MDR stains (more strains 

and synergies in ED Fig. 11). One of two biological replicates is shown. b) Drug synergies 

against the same MDR strains in the Galleria mellonela infection model (see also ED Fig. 

11). Larvae were infected by E. coli and K. pneumoniae MDR isolates (106 and 104 CFU, 

respectively) and left untreated, or treated with single drugs or combination. % larvae 

survival was monitored at indicated intervals after infection – n=10 larvae per treatment. 

Here is shown the average of 3 biological replicates; error bars depict standard deviation. 
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Methods 
Strains, plasmids and drugs 
For each of the three Gram-negative species profiled in this study, we used two broadly-

used and sequenced strains: Escherichia coli K-12 BW25113 and O8 IAI1, Salmonella 

enterica serovar Typhimurium LT2 and 14028s, Pseudomonas aeruginosa PAO1 and PA14. 

To validate selected synergies, we profiled 6 MDR clinical Enterobacteriaceae isolates 

recovered from human patient specimens: E. coli 124, 1027, 1334 and Klebsiella 

pneumoniae 718, 929 and 980 (see Supplementary Table 4 for details on antibiotic 

resistance determinants). 

All mutants used in this study were made using the E. coli Keio Knockout Collection 26 - after 

PCR-confirming and retransducing the mutation to wildtype BW25113 with the P1 phage 

(Supplementary Table 5). The kanamycin resistance cassettes was excised when necessary 

using the plasmid pCP20 33. The plasmid used for mdfA overexpression was obtained from 

the mobile E. coli ORF library 34. 

Drugs used in this study were purchased from Sigma Aldrich, except for metformin 

hydrochloride (TCI Chemicals), clindamycin and bleomycin (Applichem), CHIR-090 

(MedChemtronica) and vanillin (Roth). Stocks were prepared according to supplier 

recommendations (preferably dissolved in water) and kept in the dark at -30oC until arrayed 

into the plates. 

Minimal Inhibitory Concentration (MIC) calculation 

We defined MIC as the lowest concentration required to inhibit growth of a microorganism 

after 8 hours of incubation in Lysogeny Broth (LB) at 37oC with shaking (384 wells plates, 

starting OD595nm 0.01). MICs of all drugs were computed using a logistic fit of growth 

(OD595nm for 8h) over 2-fold serial dilutions of the antibiotic concentrations for all strains used 

for the high-throughput screening and follow-up experiments. 

High-throughput screening of pairwise drug interactions 
For all drug combination experiments, drugs were diluted in LB to the appropriate working 

concentrations in transparent 384-well plates (Greiner BioOne GmbH), with each well 

containing 30µl in total. After the addition of drugs, cells were inoculated at initial OD595nm 

~0.01 from an overnight culture. The same inoculum size was used for all strains. All liquid 

handling (drug addition, cell mixing) was done with a Biomek FX liquid handler (Beckman 

Coulter). Plates were sealed with breathable membranes (Breathe-Easy®) and incubated at 
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37oC in a humidity-saturated incubator (Cytomat 2, Thermo Scientific) with continuous 

shaking and without lids to avoid condensation. OD595nm was measured every 40 min for 12 

hours in a Filtermax F5 multimode plate reader (Molecular Devices). 

A flowchart of the experimental and analytical pipeline is shown in ED Fig. 2a. Data analysis 

was implemented with R and networks were created with Cytoscape 35. 

Experimental Pipeline 

The drug-drug interaction screen was performed using 4x4 checkerboards. 62 drugs were 

arrayed in 384 well plates with the different concentrations in duplicates (array drugs). Each 

plate contained 12 randomly distributed wells without arrayed drug: 9 wells containing only 

the query drug, and 3 wells without any drug. One query drug at a single concentration was 

added in all wells of the 384-well plate, except for the 3 control wells. All drugs were queried 

once per concentration, occasionally twice. We used 78 drugs as query in E. coli and S. 

Typhimurium, and 76 in P. aeruginosa. In total 79 query drugs were screened, out of which 

75 were common for all three species (Supplementary Table 1). The 62 array drugs were a 

subset of the 79 query drugs. The same drug concentrations were used in both query and 

array drugs (Supplementary Table 1). Three drug concentrations (2-fold dilution series) were 

selected based on the MIC curves, tailored to the strain and drug. We targeted for nearly full, 

moderate, and mild/no growth inhibition –on average, corresponding to 50-100%, 25-50% 

and 0-25% of the MIC, respectively. The highest drug concentration and the lowest fitness 

obtained per single drug, are listed in Supplementary Table 1. For drugs that do not inhibit 

growth on their own, we selected concentrations according to sensitivity of other 

strains/species or to their use in clinics or for research. E. coli and S. Typhimurium exhibited 

largely similar single drug dose responses within species, thus the same drug 

concentrations were used for both strains of each species. For P. aeruginosa, MICs often 

differed by several fold, thus drug concentrations were adjusted between the two strains 

(Supplementary Table 1). 

Growth curves analysis 

The Gompertz model was fitted to all growth curves (when growth was observed) by using 

the R package grofit version 1.1.1-1 for noise reduction. Quality of fit was assessed by 

Pearson correlation (R), which was > 0.95 for ~95% of all growth curves. R < 0.95 was 

indicative of either non-sigmoidal-shaped growth curves, typical of some drugs such as 

fosfomycin, or of highly noisy data. In the first case, the original data was kept for further 

analysis. In the second case, noisy data was removed from further analysis. Plate effects 

were corrected by fitting a polynomial to the median growth of each row and column. 
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Background signal from LB was removed by subtracting the median curve of the non-

growing wells from the same plate. These were wells in which either the single or the double 

drug treatments fully inhibited growth; each plate contained at least three such wells. Data 

was processed per strain and per batch to correct for systematic effects. 

Fitness estimation 

We used a single time-point OD595nm measurement (growth) for assessing fitness. This 

corresponded to the transition to stationary phase for cells grown without perturbation, as 

this allows us to capture the effect of drugs on lag-phase, growth rate or maximum growth. 

Thus, we used OD595nm at 8 hours for E. coli BW25113 and both P. aeruginosa strains, at 7 

hours for the fast-growers E. coli iAi1 and S. Typhimurium 14028s, and at 9 hours for the 

slower growing S. Typhimurium LT2. 

We used the Bliss model to assess interactions, as it can accommodate drugs that have no 

effect alone, but potentiate the activity of others (adjuvants) 36. This feature is especially 

relevant here, since we probed intrinsically antibiotic-resistant microbes (P. aeruginosa and 

MDR clinical isolates), and human-targeted drugs or food additives lacking antibacterial 

activity. According to the Bliss independence model 37 and assuming that drug-drug 

interactions are rare, for most drug combinations the fitness of arrayed drugs (fa) equals the 

fitness in the presence of both drugs (faq) divided by the fitness of the query drug alone (fq): 

𝜀 = 𝑓!" − 𝑓! ∗ 𝑓!             (Eq. 1) 

if 𝜀 = 0 

𝑓! =
!!"
!!
⟺ 𝑓! =

!!"
!!

!!
!!

⟺ 𝑓! =
!!"
!!

        (Eq. 2) 

where 𝜀 denotes the Bliss score, f denotes fitness, g denotes growth, a denotes an arrayed 

drug, q denotes a query drug and 0 denotes no drug. The fitness in the presence of both 

drugs (faq) was calculated by dividing the growth in the presence of both drugs (gaq) by the 

median of the growth of drug-free wells from the same plate (g0). The fitness of the single 

query drugs (fq) was obtained by dividing the top 5% growing wells across each batch by the 

median of the growth of drug-free wells of each plate (g0). This metric is more robust to 

experimental errors than using only the 9 wells containing the query drug alone. 

Nevertheless, both estimators for fq yield very similar results (Pearson correlation = 0.98). In 

line with Eq. 2, the fitness of arrayed drugs (fa) was estimated by the slope of the line of best 

fit between gaq and gq across all plates (query drugs) within a batch: 
𝑔!!
⋮
𝑔!! !×!

∙ 𝑓!! =
𝑔!!!!
⋮

𝑔!!!! !×!

, 1 ≤ 𝑚 ≤ 𝑛𝑟 𝑎𝑟𝑟𝑎𝑦𝑒𝑑 𝑑𝑟𝑢𝑔𝑠    (Eq. 3) 
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for given array drug m (am) across n query drugs q within a batch (ED Fig. 2b). 

For array drugs with Pearson correlation between gaq and gq below 0.7 fa was estimated 

using only the query drugs corresponding to the interquartile range of gaq/gq (minimum n = 

18 query drugs, ED Fig. 2b). Wells where r was still bellow 0.7, even after restricting the 

number of plates, were removed from further analysis due to high noise (~2%). For wells 

exhibiting no growth for > 75% of the plates within a batch fa was deemed as zero. 

Interaction scores 
Bliss independence 

Bliss scores (𝜀) were calculated for each well as described above (Eq. 1). At least 3 x 3 drug 

concentrations x 2 (duplicates) x 2 (query and array drugs) = 36, or 18 (drugs used only as 

query) scores were obtained per drug pair. Drug-drug interactions were inferred based on 

the Bliss independence model in three steps: a) strong interactions based on complete 𝜀 

distributions, b) strong interactions based on 𝜀 distributions restricted to relevant drug 

concentrations and c) weak and conserved interactions within species. Cross-species 

comparison, drug-drug interaction networks and monochromaticity analysis shown in this 

study include all drug-drug interactions. 

a) Strong drug-drug interactions based on complete 𝜀 distributions

Strong drug-drug interactions were statistically assigned using a re-sampling approach. 

10,000 repetitions of a two-sided Wilcoxon rank-sum test (per drug pair, per strain) were 

performed, in order sample a representative set of 𝜀 for a given strain. For every repetition, 

the 𝜀 distribution of a given combination was compared to a 𝜀 distribution of the same size 

randomly sampled from the complete 𝜀 set for a given strain. Permutation p-values were 

calculated as follows: 

𝑝 =  
(𝑝! > 0.1)!

!!! + 1
𝑁 + 1

 (Eq. 4) 

where N is the total number of repetitions (10,000) and pn is the p-value of the Wilcoxon 

rank-sum test obtained for the nth repetitions. Strong drug-drug interactions were assigned to 

those drug pairs simultaneously satisfying two criteria: i) 1st or 3rd quartile of the 𝜀 distribution 

below -0.1 or higher than 0.1, for synergies or antagonisms respectively, and ii) p < 0.05 

(after correcting for multiple testing, Benjamini-Hochberg). Only one-sided drug interactions 

were taken into account, thus those few interactions satisfying the criteria concurrently for 

synergy and antagonism where re-assigned as neutral (only n=1 for 𝜀 > |0.1|). The highest 
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absolute 𝜀 value between 1st and 3rd quartile was used as single interaction score (𝜀) to 

reflect the strength of the drug-drug interactions. 

b) Strong drug-drug interactions based on 𝜀 distributions restricted to relevant drug

concentrations 

Because drug interactions are concentration dependent, the same statistical procedure was 

repeated after restricting the drug concentration ratios to those relevant for either synergy or 

antagonism. This constraint was added by excluding 𝜀 values corresponding to 

concentration ratios where the expected fitness (product of the fitness on single drugs, fa*fb) 

was below 0.2 for synergy and above 0.8 for antagonism – blind spots for either interaction 

type (ED Fig. 3d). These interactions are described by their p-value and 𝜀 obtained with 

restricted drug concentration ratios. Although most interactions were detected based on both 

full and restricted 𝜀 distributions, each of the different methods had uniquely identified 

interactions (ED Fig. 4c). With the expected fitness cutoff of 0.2, we identified the highest 

number of strong interactions (1950) with 90 uniquely identified interactions from full 𝜀 

distributions and 379 from restricted (see also sensitivity analysis). 

Restricting 𝜀 values based on expected fitness also allows defining whether synergy or 

antagonism is detectable for any given drug pair. No significant p-value was found for drug 

pairs with less than 5 𝜀 scores within the relevant expected fitness space, as their sample 

size is insufficient. Synergy and antagonism could not be detected for 1% and 25% of all 

drug combinations, respectively. 

c) Weak and conserved drug-drug interactions within species

For drug pairs with a strong drug-drug interaction in only one of the two strains per species, 

the criteria for assigning interactions for the second strain was relaxed to |𝜀!"#$%& !"#$%&| > 

0.06, provided that the interaction sign was the same. Interactions assigned with this 

approach are termed weak and conserved. 

Loewe Additivity 

For combinations between β-lactams for which high-resolution 8x8 checkerboards with 

sufficient growth inhibition was available in the validation dataset, Loewe additivity 38 was 

used to confirm the interactions. Drug-drug interactions were inferred by the shape of the 

isoboles (lines of equal growth) in two-dimensional drug concentration plots. Unless stated 

otherwise, all isoboles correspond to 50% growth inhibition (IC50) and were obtained by 

fitting a logistic model – with lines representing isoboles and dots IC50 interpolated 
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concentrations. To interpolate IC50 concentrations (or other ICn%), a logistic model was used 

to fit the growth for each concentration of the first drug across different concentrations of the 

second drug. The null-hypothesis of this model is represented by the additivity line: a linear 

isobole connecting equal individual IC’s by the two drugs. 

Sensitivity analysis 
We confirmed the adequacy of the main statistical parameters used to assign interactions by 

conducting a sensitivity analysis. Several expected fitness (fa*fb) cutoffs were tested, while 

keeping the other parameters constant (ED Fig. 4c). The added value of restricting the ε 

distributions to relevant drug concentrations (based on expected fitness) was strongly 

supported by the proportion of strong drug-drug interactions found exclusively using this 

criterion (~19% with our selected cutoff). The selected cutoff (0.2; disregarding wells with 

fa*fb < 0.2 for synergies and with fa*fb > 0.8 for antagonisms) resulted in the largest number of 

total interactions assigned, and the highest precision (91%) and recall (74%) after 

benchmarking against the validation dataset (ED Fig. 4c). 

The suitability of the thresholds applied to define strong (| 𝜀 | > 0.1) and weak (| 𝜀 | > 0.06) 

interactions was assessed by their impact on the true and false positive rates (TPR and FPR 

respectively, ED Fig. 4d). A threshold of | 𝜀 | > 0.1 is beneficial, as it imposes a minimum 

strength to assign interactions. 0.1 corresponds to ~3 times the median of the 1st and 3rd 

quartiles across all 𝜀 distributions (ED Fig. 2c). Lowering this threshold results in lower TPR, 

because several drug pairs are reassigned to neutral due to ambiguity in calling interaction 

(we do not allow interactions being both a synergy and an antagonism). Increasing this 

threshold lowers the TPR, because only very strong interactions will be assigned (ED Fig. 

4d). Drug-drug interactions are highly conserved within species, exhibiting high correlation of 

𝜀 observed for all species (Fig. 2a and ED Fig. 9a-b). This motivated us to relax the 

interaction strength threshold for the second strain if interaction score | 𝜀 |  was above 0.1 in 

first, dubbing these interactions weak and conserved. Including weak and conserved 

interactions in our analysis increased the TPR by 15%. Adding a threshold for weak 

interactions of | 𝜀 | > 0.06 (~2 times the median of the 1st and 3rd quartiles of all 𝜀 

distributions) is key for maintaining a suitable FPR (ED Fig. 4d). 

Benchmarking & clinical isolates checkerboard assays 
8x8 checkerboard assays were performed for validating our screen (242 drug combinations - 

benchmarking dataset, Supplementary Table 3), as well as to test 7 selected synergies 

against 6 MDR clinical isolates (Fig. 4 & ED Fig. 11). As in the screen, growth was assessed 
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based on OD595nm at the transition to stationary phase for the no drug controls. The 

timepoints used in the screen were used again for the validation set, whereas 8 hours were 

used for all E. coli and K. pneumoniae MDR isolates. Fitness was calculated by dividing 

OD595nm after single or double drug treatment by no drug treatment for each individual 

checkerboard. Bliss scores (𝜀) were calculated as before, resulting in 49 𝜀 values per drug 

pair. Drug combinations were analyzed based on 𝜀 distributions, after removing wells in 

which one of the drugs alone and its subsequent combinations with the second drug 

completely inhibit growth. Antagonism was assigned when the median of the 𝜀 distribution 

was above 0.1 or the 3rd quartile was above 0.15. Similarly, synergies were assigned when 

the median of the 𝜀 distribution was below -0.1 or the 1st quartile was below -0.15. All 

experiments were done in biological duplicates, and interactions were considered effective 

when duplicates agreed. 

Assessing conservation of drug-drug interactions 
Conservation of drug-drug interactions between strains of the same species was assessed 

by Pearson correlation of the interactions scores, 𝜀. For potentially non-conserved drug-drug 

interactions, the expected fitness distributions of the two strains were taken into account. 

When the two distributions were significantly different according to a two-sided Wilcoxon 

rank-sum test (p-value < 0.05 after BH correction for multiple testing), the drug pairs were 

deemed as non-comparable between the two strains. 

To assess the cross-species conservation of drug-drug interactions, we took into account 

only drug pairs that were probed in all three species. Drug-drug interactions were defined as 

being detected within a species, when detected in at least one of the two strains and no 

change of interaction sign was observed for the other strain. Interactions were then 

compared across the three species. Cases in which an interaction between drugs changed 

sign across species (conflicting interactions; ~7% of all interactions -Supplementary Table 2) 

were excluded from the comparative “across-species” Venn diagram (Fig. 2c). Note that with 

current analysis a given drug-drug interaction may be conserved across species, but not 

conserved within the species. 

Conservation at the single drug level was defined based on shared resistance and sensitivity 

(Supplementary Table 1). A strain was considered sensitive to a given drug if one of the 

drug concentrations resulted in at least 30% growth inhibition. In line with conservation of 

drug-drug interactions across species, single drug responses are conserved across species 

when at least one strain of both species has the same sign (sensitive or resistant). 
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 Monochromaticity index 
 The monochromaticity index (MI) between drug pairs was defined as in Szappanos et. al 39:   

𝑖𝑓 𝑟!" > 𝑏,𝑀𝐼!" =
𝑟!" − 𝑏
1 − 𝑏

𝑓𝑖 𝑟!" = 𝑏,𝑀𝐼!" = 0           (𝐸𝑞. 5) 

𝑖𝑓 𝑟!" < 𝑏,𝑀𝐼!" =
𝑟!" − 𝑏
𝑏

where rij denotes the ratio of antagonism to all interactions between drugs from classes i and 

j, and b denotes the ratio of antagonism to all interactions. We set a minimum of 2 

interactions between drugs from classes i and j in order to calculate the MI. MI equals 1 if 

only antagonisms occur between drugs from classes i and j, and -1 if only synergies occur. 

MI equals zero if the fraction of antagonism reflects the background ratio b. Both strong and 

weak drug interactions were taken into account across all species, in order to obtain one MI 

index per drug category pair. 

Assessment of drug combinations in the Galleria mellonella infection model 
Larvae of the greater wax moth (Galleria mellonella) at their final instar larval stage were 

used as an in vivo model to assess efficacy of drug combinations.  Larvae were purchased 

from UK Waxworms (Sheffield, UK) and TZ-Terraristik (Cloppenburg, Germany). Stock 

solutions of vanillin (in 20% DMSO), spectinomycin (Aqua dest.), colistin (Aqua dest.) and 

clarithromycin (20% DMSO/0.01% glacial acetic acid) were freshly prepared and diluted in 

PBS to the required concentration. Drugs and bacterial suspensions were administered by 

injection of 10 µL aliquots into the hemocoel via the last left (drugs) and right (antibiotic) 

proleg using Hamilton precision syringes. Controls included both uninfected larvae, and 

larvae which were injected into both last prolegs with the solvent used for the drugs. Drug 

toxicity was pre-evaluated by injection of serial dilutions of either single drugs or drug 

combination, and drugs were used at amounts that caused little/no toxicity. Similarly, time-

kill curves were generated by inoculating the larvae with 10 µl of serial diluted bacterial 

suspensions (1x102 to 1x107 colony forming units [CFU]) to identify an optimal inoculum. 

For final experiments, groups of ten larvae were injected per strain/drug combination and 

placed into Petri dishes and incubated at 37 °C. Larvae were infected with a (sub)lethal dose 

of 106 and 104 CFU for E. coli and K. pneumoniae isolates, respectively, and subsequently 

injected with the drugs, 1-hour post infection. Larvae survival was monitored at the indicated 

time points by two observers independently. Each strain/drug combination was evaluated in 

3-4 independent experiments.
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Cell viability assays and intracellular antibiotic concentration 
Ciprofloxacin 

Overnight cultures of E. coli BW25113 were diluted 1:1,000 into 50 ml LB and grown at 37°C 

to OD595nm ~0.5. Paraquat (50 µg/ml), Vanillin (150 µg/ml), Benzalkonium (5 µg/ml), Caffeine 

(200 µg/ml), Doxycycline (0.5 µg/ml), Rifampicin (5 µg/ml), Trimethoprim (5 µg/ml) or 

Curcumin (100 µg/ml), were added to the cultures and incubated at 37oC for 30 minutes 

prior to the addition of 2.5 µg/ml final concentration ciprofloxacin. The cultures were 

incubated at 37oC for 1 hour in the presence of both drugs. Cell viability was determined by 

counting CFUs after 16 hours incubation of washed cell pellets plated onto drug-free agar 

petri dishes. Intracellular ciprofloxacin was quantified using liquid chromatography coupled 

to tandem mass spectrometry (LC-MS/MS), as previously described 40,41. Non-washed cell 

pellets 42 were directly frozen and lysed with 350 µl of acetonitrile, followed by three freeze-

thaw cycles (thawing was performed in an ultrasonic bath for 5 min). Cell debris was pelleted 

at 16,000 g and the supernatant was filtered through a 0.22 µm syringe filter prior to 

injection. Chromatographic separation was achieved on a Waters BEH C18 column (2.1 × 

50 mm; 1.7 µm) at 40 °C, with a 2 min gradient with flow rate of 0.5 mL/min: (i) 0–0.5 min, 

1% mobile phase B; (ii) 0.5–1.2 min, linear gradient from 1 to 95% mobile phase B; (iii) 1.2–

1.6 min, 95% mobile phase B; and (iv) 1.6–1.7 min, return to initial conditions (mobile phase 

A consisted of 0.1% formic acid in water, and mobile phase B consisted of 0.1% formic acid 

in acetonitrile). Samples were kept at 4 °C until analysis. Sample injection volume was 5 µL. 

Detection of ciprofloxacin was performed on a Waters Q-Tof premier instrument with 

electrospray ionization in positive mode. The transition 332>314 was monitored, with cone 

voltage set at 8 and collision energy set at 20. Intracellular ciprofloxacin was normalized to 

CFU at the time of ciprofloxacin addition. 

Gentamicin 

Intracellular gentamicin was quantified by measuring [3H]-gentamicin (1 mCi/ml; Hartmann 

Analytic Corp.), as previously described 7. Overnight cultures of E. coli MG1655 (ther 

parental stain of BW25113) were diluted 1:1,000 into 5 ml LB and grown to OD595nm ~0.1. 

[3H]-gentamicin was diluted in cold gentamicin to get a 5 mg/ml (0,1 mCi/ml) stock solution, 

which was then added to the culture at a final concentration of 5 µg/ml (0,1 µCi/ml), 

simultaneously with the second drug: Berberine (200 µg/ml), Erythromycin (15 µg/ml), 

Metformin (13000 µg/ml), Procaine (6000 µg/ml), Loperamide (400 µg/ml), Benzalkonium (5 

µg/ml), Rifampicin (5 µg/ml) or Clindamycin (200 µg/ml). Cultures were then incubated at 

37°C on a rotary shaker. At 0, 0.5, 1, 1.5 and 2h time-points, 500 µl aliquots were removed 
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and applied to a 0.45 µm-pore-size HAWP membrane filter (Millipore) pretreated with 1 ml of 

unlabeled gentamicin (250 µg/ml). Filters were washed with 10 ml of 1.5% NaCl, placed into 

counting vials, and dried for 30 min at 52°C. 8 ml of liquid scintillation were then added to the 

dried filters and vials were incubated overnight at room temperature before being counted 

for 5 min. Gentamicin uptake efficiency is expressed as total accumulation of gentamicin 

(ng) per 108 cells, and plotted here for the final timepoint (2h). Cell viability was determined 

by CFUs. 

Spectinomycin 

Intracellular spectinomycin was quantified by measuring [3H]-spectinomycin (1 µCi/mg; 

Hartmann Analytic Corp.). Overnight cultures of E. coli BW25113 were diluted 1:1,000 into 1 

ml LB with and without vanillin (150 µg/ml) and grown to OD595nm ~0.5. 50 µg/ml [3H]-

spectinomycin:spectinomycin 1:100 was added and the cultures were incubated for 1 h. 

Cultures were pelleted, washed twice with PBS with 50 µg/ml non-labeled spectinomycin, re-

suspended in 1% SDS and incubated for 20 min at 85°C. The lysate was mixed with 8 ml 

liquid scintillation (Perkin Elmer ULTIMA Gold) and counted for 1 min using a Perkin Elmer 

Tri-Carb 2800TR. Measured radioactivity was normalized to cell number as measured by 

OD595nm. 

RNA isolation, cDNA preparation and Quantitative RT-PCR 
Overnight cultures of E. coli BW25113 and the marR deletion mutant were diluted 1:2,000 

into 20 ml LB and grown at 37°C to OD595nm ~0.2. Aspirin or vanillin were added to the 

cultures to 500 and 150 µg/ml final concentration respectively (DMSO was added in the 

control), followed by a 30 min incubation period at 37°C with agitation. Cells were harvested 

and RNA extraction was done with the RNeasy Protect Bacteria Mini Kit (Qiagen) according 

to manufacturer's directions. cDNA was prepared for qRT-PCR using SuperScript™ III 

Reverse Transcriptase (Thermo Fisher Scientific). marA expression levels were estimated 

by quantitative RT-PCR using SYBR™ Green PCR master mix following the manufacturer's 

instructions (Thermo Fisher Scientific). Primer sequences for marA and recA are previously 

described 29. All experiments were conducted in at least three biological replicates, and 

relative expression levels were estimated according to Livak et al. 43, using recA expression 

as reference. 

Immunoblot analysis for protein quantification 
Overnight cultures of E. coli BW25113 and the marA deletion mutant (ΔmarA) were diluted 

1:1,000 into 50 ml LB containing 500 µg/ml aspirin, 150 µg/ml vanillin or DMSO (drugs 



23 

solvent control), followed by growth with agitation at 37°C to OD595nm ~0.5. Cells were 

washed in PBS containing corresponding drugs or DMSO, then resuspended to match 

OD595nm = 1. Cell pellets were resuspended in Laemmli buffer and heated to 95°C for 3 

minutes followed by immunoblot analysis with α-AcrA polyclonal antiserum (gift from K.M. 

Pos) at 1:200,000 dilution. Primary antiserum was detected using anti-rabbit HRP 

(A0545 Sigma) at 1:5,000 dilution. An anti-RecA antibody (rabit, ab63797 Abcam) was used 

for loading control. Pixel densities of bands were quantified using ImageJ. At least four 

different biological replicates were blotted and summarized by their mean and standard 

deviation. Each biological replicate was run and blotted at least twice (technical replicates). 

Relative AcrA levels per biological replicate correspond to the average intensities of the 

technical replicates.

Screening the E. coli Keio Knockout Collection for identifying MoA of drug 
interactions 
The E. coli Keio Knockout Collection 26 (two independent clones per mutant) was arrayed in 

1536-format in LB agar plates using a Rotor HDA (Singer Instruments) as previously 

described 29. The growth of each mutant was estimated by colony opacity 44 after 13 hours 

incubation at 37oC in the absence and presence of vanillin (200 µg/ml), spectinomycin (4 

µg/ml), and their combination. All plates were imaged under controlled lighting conditions 

(spImager S&P Robotics) using an 18-megapixel Canon Rebel T3i (Canon). Experiments 

were done in triplicates. Fitness of each mutant was calculating by dividing the growth in 

condition (vanillin, spectinomycin or both) by the growth in LB, after correcting for outer-

frame plate effects 44. Bliss scores were calculated as per Eq. 1 per replicate and then 

averaged (Supplementary Table 7) 

Data availability statement 
Data supporting the findings of this study are included in this article as supplementary files. 

Code availability 
The code used for data analysis is available from the corresponding author upon reasonable 

request. 
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Extended Data Figures Legends 
Extended Data Figure 1: High-throughput profiling of pairwise drug combinations in 

Gram-negative bacteria. a) Drug and species selection for screen. The 79 drugs used in 

the combinatorial screen are grouped to categories (Supplementary Table 1). Antibacterials 

are grouped by target with the exception of antibiotic classes for which enough 

representatives were screened (>2) to form a separate category: β-lactams, macrolides, 

tetracyclines, fluoroquinolones and aminoglycosides. Classification of human-targeted drugs 

and food additives is not further refined, because the MoA is unclear for most. A subset of 

62 arrayed drugs was profiled against the complete set of 79 drugs in 6 strains. Strains are 

color coded according to species. Strain colors and abbreviations are used in main and ED 

figures. b) Quantification of drug-drug interactions. Growth was profiled by measuring optical 

density (OD595nm) over time in the presence of no, single and both drugs. Interactions were 

defined according to Bliss independence. Significantly lower or higher fitness than 

expectation (fa*fq) indicates synergy or antagonism, respectively. Synergy and antagonism 

were assessed by growth in 4x4 checkerboards (Methods). 

Extended Data Figure 2: Data analysis pipeline. a) Flowchart of the data analysis 

pipeline. b) Estimating single drug fitness of arrayed drugs. As drug-drug interactions are 

rare, the slope of the line of best fit between gaq (growth with double drug) and gq (growth 

with query drug alone – deduced from average of the top 5% growing wells across plates) 

across np query drugs (plates) corresponds to a proxy of the fitness of the arrayed drug 

alone, fa (Methods, Eq 3). R denotes the Pearson correlation coefficient between gaq and gq 

across np plates. Well A9 from E. coli BW25113 containing 3µg/ml spectinomycin is shown 

as an example of arrayed drugs with several interactions; several query drugs (plates) 

deviate from the expected fitness (light grey points), therefore only half of the plates 

corresponding to the interquartile range of fa were used to estimate fa. c) Density 

distributions of quartiles 1, 2 and 3 of Bliss scores (𝜀) distributions for E. coli.  Q1, Q2 and 

Q3 denote the median of quartiles 1, 2 and 3 of 𝜀 distributions, respectively. n denotes the 

number of drug combinations used. 

Extended Data Figure 3: Data quality control. a) High replicate correlation for single and 

double drug treatments. Transparent boxplots contain Pearson correlation coefficients 

between plates of the same batch containing arrayed drugs only (LB was used instead of the 

second drug). n represents the total number of correlations. Full boxplots contain Pearson 

correlation coefficients between double drug replicate wells within the same plate, across all 

plates. n represents the number of wells used for correlation, nmax = (62 drugs + 1 LB) x 3 



25 

concentrations = 189. Only wells with median growth above 0.2 were taken into account 

(see panel b). For all box plots the center line, limits, whiskers and points correspond to the 

median, upper and lower quartiles, 1.5x IQR and outliers, respectively. b) Wells with lower 

median growth have lower replicate correlation. The double drug correlation coefficients 

used to generate the boxplot from a are plotted as function of the median growth of all wells 

across all plates for E. coli iAi1. Wells with overall lower growth (due to strong inhibition of 

arrayed drug) are less reproducible due to a combination of the lower spread of growth 

values and the sigmoidal nature of the drug dose response curves. c) Drug-drug interactions 

are rare. Density distributions of all Bliss scores (𝜀) obtained per strain. d) The ability to 

detect synergies and antagonisms depends on the effects of single drug treatments. Bliss 

scores (𝜀) are plotted as function of expected fitness (fa*fq) for all drug concentration ratios 

for all combinations in E. coli BW (example). Boxplots summarizing both variables are 

shown besides the axes (n=99,907 Bliss scores, center line, limits, whiskers and points 

correspond to the median, upper and lower quartiles, 1.5x IQR and outliers, respectively.). 

Blind spots for detecting antagonism and synergy are indicated; they are both based on the 

expected fitness (see also ED Fig. 4c-d) and thus dependent on the growth of the strain with 

the single drugs The number of drug combinations falling in the blind spot for antagonism is 

larger, due to the number of drugs used in the screen that do not inhibit E. coli on their own. 

e) Scatter plot of number of interactions per drug versus the minimum fitness of the drug

alone (as obtained in screen, Supplementary Table 1). Strong and weak interactions are 

represented. n denotes the total number of interactions and R is the Pearson correlation 

coefficient. Strains are color coded as panels a & c. f) Density distributions of the number of 

interactions per drug for all strains. 

Extended Data Figure 4: Benchmarking. a) Validation set is enriched in synergies and 

antagonisms to assess better true and false positives. Comparison of the interaction 

fractions between the screen and validation set. Both strong and weak interactions (Fig. 2b) 

are accounted for the screen tally. b) Number of benchmarked interactions per strain. c & d) 

Sensitivity analysis of the statistical thresholds for calling interactions. c) Total amount of 

interactions as function of the expected fitness (fa*fb) cutoff used for restricting the 𝜀 

distributions to relevant drug concentrations. Strong drug-drug interactions are classified 

according to the 𝜀 distribution where they were significant: complete distribution only (i.e. all 

expected fitness wells), relevant wells only (i.e. all wells with fa*fb > cutoff for synergies and 

all wells with fa*fb < (1-cutoff) for `antagonisms), or in both. Weak drug-drug interactions are 

independently assigned, and represented in white for completeness. We selected an 

expected fitness cutoff of 0.2, as it resulted in the largest number of total interactions 

detected, with the highest precision and recall (91 and 74% respectively) after benchmarking 
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against the validation dataset. d) Receiver operating characteristic (ROC) curve for the 

screen across different p-value thresholds (two-sided permutation test of Wilcoxon rank-

sum) as a unique criterion for assigning interactions. The selected p-value (0.05) for screen 

threshold is indicated by a grey cross. Sensitivity to additional parameters for calling hits is 

shown: allowing interactions to be either antagonisms or synergies but not both (1-sided); 

strong and weak interaction thresholds. True and false positive rates were estimated based 

on the validation dataset. Precision and recall for the final and best performing set of 

parameters, are shown: one-sided interactions, p < 0.05, fa*fb cutoff = 0.2 and |𝜀|>0.1 for 

strong interactions, |𝜀| > 0.06 for weak interactions. TP, TN, FP and FN stand for True 

Positives, True Negatives, False Positives and False Negatives, respectively. n indicates the 

total number of benchmarked drug combinations (Supplementary Table 3). e) Synergies 

between β-lactams according to Loewe additivity interaction model. The results of 8x8 

checkerboards for 3 combinations between β-lactams in 4 strains are shown. The grey line 

in each plot represents null hypothesis in the Loewe additivity model, whereas the black line 

corresponds to the IC50 isobole, estimated by fitting a logistic curve to the interpolated drug 

concentrations (colored dots, Methods). Piperacillin did not reach 50% growth inhibition in E. 

coli, thus IC20 and IC40 isoboles were used for the amoxicillin + piperacillin combination in E. 

coli BW and E. coli iAi1, respectively. 

Extended Data Figure 5: Benchmarking of non-comparable drug-drug interactions. a) 

The barplot illustrates the division of benchmarked drug combinations according to their 

degree of conservation within species. The pie chart shows the proportion of False & True 

Positive (FP & TP) and False and True Negatives (FN & TN) within non-comparable drug-

drug interactions. b) Combination of amoxicillin with cefotaxime in P. aeruginosa: an 

example of a non-comparable drug-drug interaction. The results of the screen are presented 

on the upper box. Bliss scores as function of expected fitness for both strains are presented 

on the left hand side, while a density distribution of the Bliss scores is shown on the right 

hand side. n denotes the total number of Bliss scores, Q1 and Q3 indicate the Bliss score for 

quartiles 1 and 3, respectively. Antagonism was detected only for PAO1 (Q3 > 0.1). PA14 

was resistant to both drugs in concentrations screened (upper left panel), rendering 

detection of antagonism impossible. The benchmarking results indicate that interaction is 

antagonistic in both strains (lower box), albeit weaker at PA14 and visible mostly at higher 

concentrations. Color on checkerboard reflects fitness and black dots correspond to drug-

ratios where the Bliss score is above 0.1. 
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Extended Data Figure 6: Benchmarking of weak conserved drug-drug interactions. a) 

The barplot illustrates the division of benchmarked drug combinations as in ED Fig. 5a. The 

pie chart shows the proportion False Positives (FP) and True Positives (TP) within weak 

conserved interactions. b) Combination of doxycycline with amikacin in S. Typhimurium: an 

example of a weak conserved drug-drug interaction. The results of the screen are presented 

on the upper box. Bliss scores as function of expected fitness for both strains are presented 

on the left hand side, while a density distribution of the Bliss scores is shown on the right 

hand side. n denotes the total number of Bliss scores, Q1 and Q3 indicate the Bliss score for 

quartiles 1 and 3, respectively. A strong synergy was detected only for ST14028 (Q1 < -0.1), 

and then a weak conserved synergy was assigned afterwards to ST LT2 (Q1 < -0.06). The 

benchmarking results, presented on the box below, confirm that the interaction is synergistic 

in both strains. Color on checkerboard reflects fitness and black dots correspond to drug-

ratios where the Bliss score is below -0.1. 

Extended Data Figure 7: Salmonella and Pseudomonas drug-drug interaction 

networks. a & b) Drug category interaction networks. Nodes represent drug categories 

according to ED Fig. 1a. Node color/size and edge color/thickness are plotted as in Fig. 1b. 

Conserved interactions, including weak conserved, are shown here. One of the most well-

known and broadly used synergies is that of aminoglycosides and β-lactams 45. Consistent 

with its use against P. aeruginosa in clinics, we detected multiple strong synergies between 

specific members of the two antibiotic classes in P. aeruginosa, but fewer interactions in the 

other two species (see also Fig 1b). c & d) Drug-drug interactions across cellular processes. 

Representation as in a & b, but drug categories targeting the same general cellular process 

are grouped here. e) Quantification of synergy and antagonism in the networks from a & b. 

Corresponding Chi-squared test p-value shown. As in E. coli, antagonism occurs more 

frequently than synergy and almost exclusively between drugs belonging to different 

categories in S. Typhimurium and P. aeruginosa. In P. aeruginosa, there are very few 

interactions occurring between drugs of the same category. 

Extended Data Figure 8: Drug antagonisms are often due to decrease in intracellular 

drug concentrations. a) Cartoon of possible MoAs for drug-drug interactions that workin via 

modulation of the intracellular drug concentration. A drug (antagonist; blue) inhibits the 

uptake or promoting the efflux of another one (black), and thus decreases the intracellular 

concentration. b) Different antagonists (see methods for concentrations) of gentamicin (red – 

5 µg/ml) and ciprofloxacin (gold – 2.5 µg/ml) identified in our screen for E. coli BW also 

rescue the killing effect of the two bactericidal drugs in the same strain or its parental 

MG1655 (top right and left panels, respectively). With the exception of clindamycin (for 
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gentamicin) and curcumin (for ciprofloxacin) all other antagonists decrease the intracellular 

concentration of their interacting drug (bottom panels) – gentamicin detected by using 

radiolabeled compound and ciprofloxacin with LC-MS/MS (see Methods). The degree of 

rescue (upper panel) in many cases follows the decrease of intracellular concentration 

(lower panel), implying that most of these interactions depend to a large extent on 

modulating the intracellular concentration of the antagonized drug. c) Antagonisms are 

resolved in E. coli BW mutants lacking key components controlling the intracellular 

concentration of the antagonized drug. Aminoglycosides depend on PMF-energized uptake 

and thus respiratory complexes 7,46; ciprofloxacin is effluxed by AcrAB-TolC 29,47. For 

gentamicin, most interactions are resolved when respiration is defected, even the one with 

clindamycin (not modulating intracellular gentamicin concentration- see panel (b)) 

presumably because MoA and import of aminoglycosides are linked in a positive feedback 

loop 7,48. For ciprofloxacin, antagonisms with paraquat and caffeine are resolved in the 

ΔacrA mutant, implying that both compounds induce the AcrAB-TolC pump (known for 

paraquat). In contrast, interactions with curcumin, benzalkonium and doxycycline remain 

largely intact in the ΔacrA mutant. First is expected as curcumin does not modulate 

intracellular ciprofloxacin concentration (see panel b). In other two cases, other 

component(s) besides AcrAB-TolC are likely responsible for the altered ciprofloxacin 

import/export; ciprofloxacin is well known to largely use OmpF to enter the cell 49. 

Ciprofloxacin and gentamicin concentrations were adjusted in all strains according to MIC 

(70% and 100% MIC for ciprofloxacin and gentamicin, respectively; all drug concentrations 

are listed in Supplementary Table 6). Bliss interaction scores (𝜀) were calculated as in 

screen. Barplots and error bars in c & d represent the average and standard deviation, 

respectively, across n independent biological replicates. d) Gentamicin and ciprofloxacin 

antagonism networks for E. coli BW. Nodes represent drugs colored according to targeted 

cellular process (as ED Fig. 1a). Full and dashed edges represent antagonistic drug-drug 

interactions for which intracellular antibiotic concentration was and was not measured, 

respectively. Drug interactions that result in decreased intracellular concentration of the 

antagonized drug are represented by black edges. e) Quantification of antagonistic drug-

drug interactions from the networks in (d). The bars for fluoroquinolones and 

aminoglycosides account for an extrapolation of antagonistic interactions to all other 

members of the two classes, assuming they behave same as ciprofloxacin and gentamicin, 

respectively. 

Extended Data Figure 9: Drug-drug interactions are largely conserved within species 

and only partially MoA-driven. a & b) Drug-drug interactions are conserved in S. 

Typhimurium (a) and P. aeruginosa (b). Scatter plot of interaction scores in the two strains of 
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each species; only significant interactions for at least one strain are shown. Colors and 

grouping as in Fig. 3a. R denotes the Pearson correlation and n the total number 

interactions plotted. Lower correlation in P. aeruginosa is presumably due to fewer and 

weaker interactions in total. c) Drug interaction profiles are phylogeny driven. Clustering of 

strains based on Pearson correlation of their drug interaction profiles (taking into account all 

pairwise drug combinations; n=2759-2883, depending on the drug). Strains of the same 

species cluster together, with the two enterobacterial species, E. coli and S. Typhimurium, 

behaving more similar to each other than to the phylogenetically more distant P. aeruginosa. 

d) Conserved drug-drug interaction network. Nodes represent individual drugs grouped and

colored by targeted cellular process (as in ED Fig. 1a). Drug names are represented by 3 

letter codes (Supplementary Table 1). Dashed and full edges correspond to conserved 

interactions between two or three species, respectively. Many of the human-targeted drugs, 

such as loperamide, verapamil and procaine exhibit a general potentiating effect, similar to 

that of membrane-targeting drugs, suggesting that they may also facilitate drug uptake or 

impair efflux, consistent with previous reports on the role of loperamide in E. coli and 

verapamil in Mycobacterium tuberculosis 4,50. e) Monochromaticity between all drug 

categories. The monochromaticity index (MI) reflects whether interactions between drugs of 

two categories are more synergistic (MI=-1) or antagonistic (MI=1) than the background 

proportion of synergy and antagonism. MI equals zero when interactions between two drug 

categories have the same proportion of synergy and antagonism as all interactions together. 

(Methods). MI was calculated using all interactions from the 6 strains for all category pairs 

that had at least 2 interactions. White cells in the heat map correspond to category pairs for 

which no (or insufficient number of) interactions were observed. f) Human-targeted drugs, 

and LPS or PMF inhibitors are strong and promiscuous adjuvants. Density distributions of 

the MIs per drug category from panel e are shown. n denotes the amount of drugs in 

category involved in i interactions. 

Extended Data Figure 10: Hierarchical clustering of drugs according to their 

interaction profiles. Rows depict the 75 drugs common to all strains (colored according to 

drug category – ED Fig. 1a), and columns account for their interactions with other drugs in 

all six strains tested. The median of the 𝜀 distributions, uncentered correlation and average 

linkage were used for clustering. 

Extended Data Figure 11: Active synergies against Gram-negative MDR clinical 

isolates in vitro and in G. mellonela infection model. Both human-targeted drugs (lately 

found to have an extended impact on bacteria 51) and food additives can promote the action 

of antibiotics in MDR strains, indicating that should be explored more in the future. a) Drug 
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combinations active against MDR E. coli and K. pneumoniae clinical isolates (related to Fig. 

4). Interactions are shown as 8x8 checkerboards and synergies have a black bold border. 

Drug pairs are the same per line and indicated at the first checkerboard. The species in 

which interaction was detected in screen are indicated after the last checkerboard. 

Concentrations increase on equal steps per drug (see legend); only minimal and maximal 

concentrations are shown for first strain of each species. Apart from colistin, the same 

concentration ranges were used for all E. coli and K. pneumoniae MDR strains. One of two 

replicates is shown. b) Drug synergies against the same MDR strains in the Galleria 

mellonela infection model. Larvae were infected by E. coli and K. pneumoniae MDR isolates 

(106 and 104 CFU, respectively) and left untreated, or treated with single drugs or 

combination. % larvae survival was monitored at indicated intervals after infection – n=10 

larvae per treatment. Here is shown the average of 3-4 biological replicates; error bars 

depict standard deviation. 

Extended Data Figure 12: Mode of Action for the vanillin-spectinomycin synergy. a) 

Spectinomycin MIC decreases upon addition of 100 µg/ml vanillin in the wildtype E. coli BW, 

as well as single-gene knockouts of members of the AcrAB-TolC efflux pump or its MarA 

regulator. Thus, the vanillin-spectinomycin synergy is independent of the effect of vanillin on 

AcrAB-TolC (Fig. 3). b) Synergy is specific to vanillin-spectinomycin, as 500 µg/ml of the 

vanillin-related compound, aspirin antagonizes spectinomycin, increasing the MIC ~3-fold. c) 

Profiling the vanillin-spectinomycin combination in the E. coli BW Keio collection 26 to 

deconvolute its MoA. Violin plots of the drug-drug interaction scores 𝜀 of all mutants 

(n=9216; Methods) are presented for the vanillin-spectinomycin combination (synergy) and 

as control, for the combination of vanillin with another aminoglycoside, amikacin 

(antagonism). The interaction scores of the two mdfA deletion clones present in the Keio 

library are indicated by red dots. The vanillin-spectinomycin synergy is lost in the absence of 

mdfA, whereas the vanillin-amikacin antagonism remains unaffected, indicating that the 

vanillin-spectinomycin synergy depends specifically on MdfA. d) Deletion of mdfA leads to 

increased spectinomycin MIC and abolishes the synergy with vanillin, independent of the 

presence or absence of AcrAB-TolC. Mild overexpression of mdfA from a plasmid (pmdfA - 

methods) further enhances the synergy with Vanillin, further decreasing the spectinomycin 

MIC by ~2-fold (comparing to MIC of combination in wildtype). Thus, MdfA levels are directly 

correlated to the degree of the spectinomycin-vanillin synergy. e) Overexpression of mdfA 

leads to increased spectinomycin sensitivity, even though MIC does not change. The growth 

of E. coli BW and pmdfA was measured (OD595nm after 8h) over 2-fold serial dilutions of 

spectinomycin and normalized to the no-drug growth of the corresponding strain (white and 
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black dots represent the average of n=3 independent biological replicates, error bars 

represent standard deviation.). Spectinomycin dose response was computed using a logistic 

fit of the averaged data points (MICs are calculated by fitting individual replicates first and 

then averaging). Fitted curves are represented by full and dashed lines for pmdfA and E. coli 

BW respectively. f) Vanillin leads to accumulation of spectinomycin in the cell in an mdfA-

dependent manner. Intracellular spectinomycin is measured with the tritiated compound 

(Methods). Barplots and error bars in a, b, d & f represent the average and standard 

deviation, respectively, across n independent biological replicates. 
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