A. Galinier and J. Deutscher, Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system, J Mol Biol, vol.429, pp.773-89, 2017.

K. Bettenbrock, T. Sauter, and K. Jahreis, Correlatio n between growth rates, EIIA Crr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12, J Bacteriol, vol.189, pp.6891-900, 2007.

N. Amin and A. Peterkofsky, A dual mechanism for regulatin g cAMP levels in Escherichia coli, J Biol Chem, vol.270, pp.11803-11808, 1995.

L. Eron, R. Arditti, and G. Zubay, An adenosine 3':5' -cyclic monophosphatebinding protein that acts on the transcription process, Proc Natl Acad Sci, vol.68, pp.215-223, 1971.

R. Brückner and F. Titgemeyer, Carbon catabolite repressio n in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization, FEMS Microbiol Lett, vol.209, pp.141-149, 2002.

D. M. Colton and E. V. Stabb, Rethinking the roles of CRP, cAMP , and sugar-mediated global regulation in the Vibrionaceae, Curr Genet, vol.62, pp.39-45, 2016.

T. M. Henkin, F. J. Grundy, W. L. Nicholson, and G. H. Chambliss, Cata bolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli Lacl and GalR repressors, Mol Microbiol, vol.5, pp.575-84, 1991.

J. Deutscher, E. Küster, and U. Bergstedt, Protein kin ase-dependent HPr/ CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria, Mol Microbiol, vol.15, pp.1049-53, 1995.

Y. Fujita, Y. Miwa, A. Galinier, and J. Deutscher, Specific rec ognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr, Mol Microbiol, vol.17, pp.953-60, 1995.

J. M. Jault, S. Fieulaine, and S. Nessler, The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding, J Biol Chem, vol.275, pp.1773-80, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00313623

M. Kravanja, R. Engelmann, and V. Dossonnet, The hprK g ene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase, Mol Microbiol, vol.31, pp.59-66, 1999.

C. J. Hueck and W. Hillen, Catabolite repression in Bacillus s ubtilis: a global regulatory mechanism for the gram-positive bacteria?, Mol Microbiol, vol.15, pp.395-401, 1995.

Y. Miwa, A. Nakata, and A. Ogiwara, Evaluation and char acterization of catabolite-responsive elements (cre) of Bacillus subtilis, Nucleic Acids Res, vol.28, pp.1206-1216, 2000.

B. C. Marciniak, M. Pabijaniak, and A. De-jong, High-and low-affinity cre boxes for CcpA binding in Bacillus subtilis revealed by genome-wide analysis, BMC Genomics, vol.13, p.401, 2012.

A. Galinier, J. Haiech, and M. C. Kilhoffer, The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression, Proc Natl Acad Sci, vol.94, pp.8439-8483, 1997.

J. J. Landmann, S. Werner, and W. Hillen, Carbon source c ontrol of the phosphorylation state of the Bacillus subtilis carbon-flux regulator Crh in vivo, FEMS Microbiol Lett, vol.327, pp.47-53, 2012.

A. Galinier, J. Deutscher, and I. Martin-verstraete, Phosphory lation of either crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon, J Mol Biol, vol.286, pp.307-321, 1999.

I. Martin-verstraete, J. Deutscher, and A. Galinier, Phosphory lation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon, J Bacteriol, vol.181, pp.2966-2975, 1999.

J. Stülke, M. Arnaud, G. Rapoport, and I. Martin-verstraete, PR D: a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria, Mol Microbiol, vol.28, pp.865-74, 1998.

J. Deutscher, F. M. Aké, and M. Derkaoui, The bacterial ph osphoenolpyru vate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions, Microbiol Mol Biol Rev, vol.78, pp.231-56, 2014.

J. W. Lengeler and K. Jahreis, Bacterial PEP-dependent carbohydra te: phosphotransferase systems couple sensing and global control mechanisms, Contrib Microbiol, vol.16, pp.65-87, 2009.

S. Wuttge, A. Licht, and M. H. Timachi, Mode of interaction of the signaltransducing protein EIIA Glc with the maltose ABC transporter in the process of inducer exclusion, Biochemistry, vol.55, pp.5442-52, 2016.

V. Monedero, M. J. Yebra, S. Poncet, and J. Deutscher, Maltose trans port in Lactobacillus casei and its regulation by inducer exclusion, Res Microbiol, vol.159, pp.94-102, 2008.

J. Monod, Recherches sur la croissance des cultur es bactériennes, Institut Pasteur, 1942.

A. X. Van-der-stel, C. Van-de-lest, and S. Huynh, Catabolite repression in Campylobacter jejuni correlates with intracellular succinate levels, Environ Microbiol, vol.20, pp.1374-88, 2018.

S. Poncet, E. Milohanic, and A. Mazé, Correlations between carbon metabolism and virulence in bacteria, Contrib Microbiol, vol.16, pp.88-102, 2009.

M. S. Moreno, B. L. Schneider, and R. R. Maile, Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses, Mol Microbiol, vol.39, pp.1366-81, 2001.

B. Görke and J. Stülke, Carbon catabolite repression in b acteria: many ways to make the most out of nutrients, Nat Rev Microbiol, vol.6, pp.613-637, 2008.

F. Rojo, Carbon catabolite repression in Pseudomonas: o ptimizing metabolic versatility and interactions with the environment, FEMS Microbiol Rev, vol.34, pp.658-84, 2010.

X. Wang, E. B. Goh, and H. R. Beller, Engineering E. coli for sim ultaneous glucose-xylose utilization during methyl ketone production, Microb Cell Fact, vol.17, p.12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-00609637

J. Deutscher, The mechanisms of carbon catabolite repre ssion in bacteria, Curr Opin Microbiol, vol.11, pp.87-93, 2008.

P. Hoffee, E. Englesberg, and F. Lamy, The glucose permease s ystem in bacteria, Biochim Biophys Acta, vol.79, pp.337-50, 1964.

W. Kundig, S. Ghosh, and S. Roseman, Phosphate bound to hist idine in a protein as an intermediate in a novel phospho-transferase system, Proc Natl Acad Sci, vol.52, pp.1067-74, 1964.

P. W. Postma, J. W. Lengeler, and G. R. Jacobson, Phosphoenolpyruv ate:carbohydrate phosphotransferase systems of bacteria, Microbiol Rev, vol.57, pp.543-94, 1993.

J. Reizer, J. Deutscher, and M. H. Saier, Metabolite-sensitive , ATP-dependent, protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system in grampositive bacteria, Biochimie, vol.71, pp.989-96, 1989.

A. Galinier, M. Kravanja, and R. Engelmann, New prote in kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression, Proc Natl Acad Sci, vol.95, pp.1823-1831, 1998.

Y. E. Tuncil, Y. Xiao, and N. T. Porter, Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence, MBio, vol.8, 2017.

Y. Cao, K. U. Förstner, J. Vogel, and C. J. Smith, cis-Encoded small RNAs, a conserved mechanism for repression of polysaccharide utilization in bacteroides, J Bacteriol, vol.198, pp.2410-2418, 2016.

N. Kuhlmann, D. P. Petrov, and A. W. Henrich, Transcription of malP is subject to phosphotransferase system-dependent regulation in Corynebacterium glutamicum, Microbiology, vol.161, pp.1830-1873, 2015.

F. M. Aké, P. Joyet, J. Deutscher, and E. Milohanic, Mutational anal ysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes, Mol Microbiol, vol.81, pp.274-93, 2011.

A. Romero-rodríguez, D. Rocha, and B. Ruiz-villafán, Carbon catabolite regulation in Streptomyces: new insights and lessons learned, World J Microbiol Biotechnol, vol.33, p.162, 2017.