L. F. Huergo and R. Dixon, The Emergence of 2-Oxoglutarate as a, Master Regulator Metabolite. Microbiol. Mol. Biol. Rev, vol.79, pp.419-435, 2015.

M. I. Muro-pastor, J. C. Reyes, and F. J. Florencio, Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels, J. Biol. Chem, vol.276, pp.38320-38328, 2001.

S. Laurent, H. Chen, S. Bédu, F. Ziarelli, L. Peng et al., Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120, Proc. Natl. Acad. Sci, vol.102, pp.9907-9912, 2005.

M. J. Brauer, J. Yuan, B. D. Bennett, W. Lu, E. Kimball et al., Conservation of the metabolomic response to starvation across two divergent microbes, Proc. Natl. Acad. Sci, vol.103, pp.19302-19307, 2006.

A. Herrero, A. M. Muro-pastor, A. Valladares, and E. Flores, Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria, FEMS Microbiol. Rev, vol.28, pp.469-487, 2004.

J. Li, S. Laurent, V. Konde, S. Bédu, and C. Zhang, An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120, Microbiology, vol.149, pp.3257-3263, 2003.

J. Meeks, E. Campbell, M. Summers, and F. Wong, Cellular differentiation in the cyanobacterium Nostoc punctiforme, Arch. Microbiol, vol.178, pp.395-403, 2002.

D. J. Nürnberg, V. Mariscal, J. Bornikoel, M. Nieves-morión, N. Krauß et al., Intercellular Diffusion of a Fluorescent Sucrose Analog via the Septal Junctions in a Filamentous Cyanobacterium, Am. Soc. Microbol, vol.6, pp.2109-02114, 2015.

M. Zhao, Y. Jiang, B. Xu, Y. Chen, C. Zhang et al., Crystal Structure of the Cyanobacterial Signal Transduction Protein PII in Complex with PipX. J. Mol. Biol, vol.402, pp.552-559, 2010.

M. Zhao, Y. Jiang, Y. He, Y. Chen, Y. Teng et al., Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate, Proc. Natl. Acad. Sci, vol.107, pp.12487-12492, 2010.

R. G. Uhrig, K. K. Ng, and G. B. Moorhead, PII in higher plants: a modern role for an ancient protein, Trends Plant Sci, vol.14, pp.505-511, 2009.

O. Fokina, V. Chellamuthu, K. Forchhammer, and K. Zeth, Mechanism of 2-oxoglutarate signaling by the Synechococcus elongatus PII signal transduction protein, Proc. Natl. Acad. Sci, vol.107, 2010.

C. Zhang, S. Laurent, S. Sakr, L. Peng, and S. Bédu, Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals, Mol. Microbiol, vol.59, pp.367-375, 2005.

L. F. Huergo, G. Chandra, and M. Merrick, PII signal transduction proteins: nitrogen regulation and beyond, FEMS Microbiol. Rev, vol.37, pp.251-283, 2012.

K. Forchhammer and J. Lüddecke, Sensory properties of the P IIsignalling protein family, FEBS J, vol.283, pp.425-437, 2015.

J. L. Llácer, J. Espinosa, M. A. Castells, A. Contreras, K. Forchhammer et al., Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII, Proc. Natl. Acad. Sci, vol.107, pp.15397-15402, 2010.

J. Espinosa, K. Forchhammer, S. Burillo, and A. Contreras, Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA, Mol. Microbiol, vol.61, pp.457-469, 2006.

J. Espinosa, K. Forchhammer, and A. Contreras, Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes, Microbiology, vol.153, pp.711-718, 2007.

J. E. Frias, E. Flores, and A. Herrero, Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120, Mol. Microbiol, vol.14, pp.823-832, 1994.

S. López-gomollón, J. A. Hernández, S. Pellicer, V. E. Angarica, M. L. Peleato et al., Cross-talk Between Iron and Nitrogen Regulatory Networks in Anabaena (Nostoc) sp. PCC 7120: Identification of Overlapping Genes in FurA and NtcA Regulons, J. Mol. Biol, vol.374, pp.267-281, 2007.

W. He, F. J. Miao, .. Lin, D. C. , .. Schwandner et al., Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors, Nature, vol.429, pp.188-193, 2004.

C. D. Doucette, D. J. Schwab, N. S. Wingreen, and J. D. Rabinowitz, Alpha-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition, Nature Chemical Biol, vol.7, pp.894-901, 2011.

K. Ireton, S. Jin, A. D. Grossman, and A. L. Sonenshein, Krebs cycle function is required for activation of the Spo0A transcription factor in Bacillus subtilis, Proc. Natl. Acad. Sci, vol.92, pp.2845-2849, 1995.

P. J. Senior, Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: Studies with the continuous-culture technique, J. Bacteriol, vol.123, pp.407-418, 1975.

F. Reyes-ramirez, R. Little, and R. Dixon, Role of Escherichia coli Nitrogen Regulatory Genes in the Nitrogen Response of the Azotobacter vinelandii NifL-NifA Complex, J. Bacteriol, vol.183, pp.3076-3082, 2001.

M. V. Radchenko, J. Thornton, and M. Merrick, Control of AmtB-GlnK Complex Formation by Intracellular Levels of ATP, ADP, and 2-Oxoglutarate, J. Biol. Chem, vol.285, pp.31037-31045, 2010.

J. Yuan, C. D. Doucette, W. U. Fowler, X. Feng, M. Piazza et al., Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli, Mol. Syst. Biol, vol.5, pp.1-16, 2009.

J. Schumacher, V. Behrends, Z. Pan, D. R. Brown, F. Heydenreich et al., Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC In Vivo, Am. Soc. Microbol

M. Zimmermann, U. Sauer, and N. Zamboni, Quantification and Mass Isotopomer Profiling of ?-Keto Acids in Central Carbon Metabolism, Anal. Chem, vol.86, pp.3232-3237, 2014.

D. Yan, P. Lenz, and T. Hwa, Overcoming fluctuation and leakage problems in the quantification of intracellular 2-oxoglutarate levels in Escherichia coli, Appl. Environ. Microbiol, vol.77, pp.6763-6771, 2011.

B. D. Bennett, J. Yuan, E. H. Kimball, and J. D. Rabinowitz, Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach, Nat. Protoc, vol.3, pp.1299-1311, 2008.

J. D. Rabinowitz and E. Kimball, Acidic Acetonitrile for Cellular Metabolome Extraction from Escherichia coli, Anal. Chem, vol.79, pp.6167-6173, 2007.

R. N. Day, W. Tao, and K. W. Dunn, A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy, Nat. Protoc, vol.11, pp.2066-2080, 2016.

R. Roy, S. Hohng, and T. Ha, A practical guide to single-molecule FRET, Nat. Meth, vol.5, pp.507-516, 2008.

H. Chen, C. S. Bernard, P. Hubert, L. My, and C. Zhang, Fluorescence resonance energy transfer based on interaction of PII and PipX proteins provides a robust and specific biosensor for 2-oxoglutarate, a central metabolite and a signalling molecule, FEBS J, vol.281, pp.1241-1255, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458196

J. Lüddecke and K. Forchhammer, From PII Signaling to Metabolite Sensing: A Novel 2-Oxoglutarate Sensor That Details PII -NAGK Complex Formation, PLoS ONE, vol.8, 2013.

C. Zhang, Z. Wei, and B. Ye, Quantitative monitoring of 2-oxoglutarate in Escherichia coli cells by a fluorescence resonance energy transfer-based biosensor, Appl. Microbiol. Biotechnol, vol.97, pp.8307-8316, 2013.

J. Elhai, A. Vepritskiy, A. M. Muro-pastor, E. Flores, and C. P. Wolk, Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120, J. Bacteriol, vol.179, 1997.

T. Ohashi, S. D. Galiacy, G. Briscoe, and H. P. Erickson, An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins, Protein Sci, vol.16, pp.1429-1438, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00186828

J. Goedhart, D. Von-stetten, M. Noirclerc-savoye, M. E. Lelimousin, L. Joosen et al., Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%, Nat. Commun, vol.3, pp.751-759, 2012.

T. A. Black, Y. Cai, and C. P. Wolk, Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena, Mol. Microbiol, vol.9, pp.77-84, 1993.

E. Olmedo-verd, A. M. Muro-pastor, E. Flores, and A. Herrero, Localized Induction of the ntcA Regulatory Gene in Developing Heterocysts of Anabaena sp. Strain PCC 7120, J. Bacteriol, vol.188, pp.6694-6699, 2006.

O. Fokina, V. Chellamuthu, K. Zeth, K. Forchhammer, and . Novel, Signal Transduction Protein P. J. Mol. Biol, vol.399, pp.410-421, 2010.

Y. Chen, O. Motteux, S. Bédu, Y. Li, and C. Zhang, Characterization of Two Critical Residues in the Effector-Binding Domain of NtcA in the Cyanobacterium Anabaena sp. Strain PCC 7120, Curr. Microbiol, vol.63, pp.32-38, 2011.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van-dien et al., Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nat. Chem. Biol, vol.5, pp.593-599, 2009.

H. Chen, S. Laurent, S. Bédu, F. Ziarelli, H. Chen et al., Studying the Signaling Role of 2-Oxoglutaric Acid Using Analogs that Mimic the Ketone and Ketal Forms of 2-Oxoglutaric Acid, Chem. Biol, vol.13, pp.849-856, 2006.

Y. Yang, X. Huang, L. Wang, V. Risoul, C. Zhang et al., Phenotypic variation caused by variation in the relative copy number of pDU1-based plasmids expressing the GAF domain of Pkn41 or Pkn42 in Anabaena sp. PCC 7120, Res. Microbiol, vol.164, pp.127-135, 2013.

E. S. Kamberov, M. R. Atkinson, and A. J. Ninfa, The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP, J. Biol. Chem, vol.270, pp.17797-17807, 1995.

G. Coutts, G. Thomas, D. Blakey, and M. Merrick, Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB, EMBO J, vol.21, pp.536-545, 2002.

P. Jiang, J. A. Peliska, and A. J. Ninfa, The Regulation of Escherichia coliGlutamine Synthetase Revisited: Role of 2-Ketoglutarate in the Regulation of Glutamine Synthetase Adenylylation State, Biochemistry, vol.37, pp.12802-12810, 1998.

P. Jiang and A. J. Ninfa, Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein, J. Bacteriol, vol.181, 1906.

E. C. Gerhardt, T. E. Rodrigues, M. Müller-santos, F. O. Pedrosa, E. M. Souza et al., The Bacterial signal transduction protein GlnB regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetyl-CoA carboxylase, Mol. Microbiol, vol.95, pp.1025-1035, 2015.

T. E. Rodrigues, E. C. Gerhardt, M. A. Oliveira, L. S. Chubatsu, F. O. Pedrosa et al., Search for novel targets of the P IIsignal transduction protein in Bacteria identifies the BCCP component of acetyl-CoA carboxylase as a P IIbinding partner, Mol. Microbiol, vol.91, pp.751-761, 2014.

J. A. Leigh and J. A. Dodsworth, Nitrogen Regulation in Bacteria and Archaea, Annu. Rev. Microbiol, vol.61, pp.349-377, 2007.

R. Dixon and D. Kahn, Genetic regulation of biological nitrogen fixation, Nat. Rev. Micro, vol.2, pp.621-631, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00427575

J. Lüddecke, L. Francois, P. Spät, B. Watzer, T. Chilczuk et al., Forchhammer, K. PII Protein-Derived FRET Sensors for Quantification and Live-Cell Imaging of 2-Oxoglutarate

S. Picossi, B. R. Belitsky, and A. L. Sonenshein, Molecular Mechanism of the Regulation of Bacillus subtilis gltAB Expression by GltC, J. Mol. Biol, vol.365, pp.1298-1313, 2007.

S. M. Daley, A. D. Kappell, M. J. Carrick, and R. L. Burnap, Regulation of the Cyanobacterial CO 2 -Concentrating Mechanism Involves Internal Sensing of NADP+ and ?-Ketogutarate Levels by Transcription Factor CcmR, PLoS ONE, vol.7, 2012.

J. A. Dodsworth, N. C. Cady, and J. Leigh, A. 2-Oxoglutarate and the PII homologues NifI 1and NifI 2regulate nitrogenase activity in cell extracts of Methanococcus maripaludis, Mol. Microbiol, vol.56, pp.1527-1538, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01797217

T. J. Lie, G. E. Wood, and J. A. Leigh, Regulation of nifExpression in Methanococcus maripaludis, J. Biol. Chem, vol.280, pp.5236-5241, 2005.

P. Bailey and J. Nathan, Metabolic Regulation of Hypoxia-Inducible Transcription Factors: The Role of Small Molecule Metabolites and Iron, Biomedicines, vol.6, 2018.

D. Ye, K. Guan, Y. Xiong, A. Metabolism, D. Targeting-of et al., Kandefer-Szerszé n, M. Alpha-Ketoglutarate as a Molecule with Pleiotropic Activity: Well-Known and Novel Possibilities of Therapeutic Use, Arch. Immunol. Ther. Exp, vol.4, pp.21-36, 2016.

K. Matsumoto, S. Imagawa, N. Obara, N. Suzuki, S. Takahashi et al., 2-oxoglutarate downregulates expression of vascular endothelial growth factor and erythropoietin through decreasing hypoxia-inducible factor-1? and inhibits angiogenesis, J. Cell. Physiol, vol.209, pp.333-340, 2006.

K. Matsumoto, N. Obara, M. Ema, M. Horie, A. Naka et al., Antitumor effects of 2-oxoglutarate through inhibition of angiogenesis in a murine tumor model, Cancer Sci, vol.100, pp.1639-1647, 2009.