N. Abreu, S. Mannoubi, E. Ozyamak, D. Pignol, N. Ginet et al., Interplay between two bacterial actin homologs, MamK and MamK-Like, is required for the alignment of magnetosome organelles in Magnetospirillum magneticum AMB-1, J. Bacteriol, vol.196, pp.3111-3121, 2014.

S. Barber-zucker, N. Keren-khadmy, and R. Zarivach, From invagination to navigation: the story of magnetosome-associated proteins in magnetotactic bacteria, Protein Sci, vol.25, pp.338-351, 2016.

R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

D. A. Bazylinski and R. B. Frankel, Magnetosome formation in prokaryotes, Nat. Rev. Microbiol, vol.2, pp.217-230, 2004.

D. A. Bazylinski, R. B. Frankel, B. R. Heywood, S. Mann, J. W. King et al., Controlled biomineralization of magnetite (Fe 3 O 4 ) and greigite (Fe 3 S 4 ) in a magnetotactic bacterium, Appl. Environ. Microbiol, vol.61, pp.3232-3239, 1995.

M. Bennet, A. Mccarthy, D. Fix, M. R. Edwards, F. Repp et al., Influence of magnetic fields on magneto-aerotaxis, PLoS ONE, vol.9, 2014.

R. Blakemore, Magnetotactic bacteria, Science, vol.190, pp.377-379, 1975.

T. Bo, K. Wang, X. Ge, G. J. Chen, and W. F. Liu, Compromised DNA damage repair promotes genetic instability of the genomic magnetosome island in Magnetospirillum magneticum AMB-1, Curr. Microbiol, vol.65, pp.98-107, 2012.

S. J. Brouns, M. M. Jore, M. Lundgren, E. R. Westra, R. J. Slijkhuis et al., Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, vol.321, pp.960-964, 2008.

H. T. Chen, J. H. Li, X. Xing, Z. J. Du, C. et al., Unexpected diversity of magnetococci in intertidal sediments of Xiaoshi island inthe North Yellow Sea, J. Nanomater, p.902121, 2015.

Y. Chen, Z. Wang, H. Ni, Y. Xu, Q. Chen et al., CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis, Sci.China Life Sci, vol.60, pp.520-523, 2017.

R. E. Cobb, Y. Wang, and H. Zhao, High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system, ACS Synth. Biol, vol.4, pp.723-728, 2015.

A. A. Dominguez, W. A. Lim, and L. S. Qi, Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation, Nat. Rev. Mol. Cell Biol, vol.17, pp.5-15, 2016.

Z. Dong, F. Dong, X. Yu, L. Huang, Y. Jiang et al., Excision of nucleopolyhedrovirus form transgenic silkworm using the CRISPR/Cas9 system, Front. Microbiol, vol.9, p.209, 2018.

O. Draper, M. E. Byrne, Z. Li, S. Keyhani, J. C. Barrozo et al., MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ, Mol. Microbiol, vol.82, pp.342-354, 2011.

D. M. Esquivel and H. G. De-barros, Motion of magnetotactic microorganisms, J. Exp. Biol, vol.121, pp.153-163, 1986.

D. Faivre and D. Schüler, Magnetotactic bacteria and magnetosomes, Chem. Rev, vol.108, pp.4875-4898, 2008.

J. J. Falke and G. L. Hazelbauer, Transmembrane signaling in bacterial chemoreceptors, Trends Biochem. Sci, vol.26, pp.257-265, 2001.

R. B. Frankel and D. A. Bazylinski, Magnetosomes and magneto-aerotaxis, Contrib. Microbiol, vol.16, pp.182-193, 2009.
DOI : 10.1159/000219380

URL : https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1196&context=phy_fac

R. B. Frankel, T. J. Williams, and D. A. Bazylinski, Magneto-aerotaxis, Magnetoreception and Magnetosomes in Bacteria, pp.1-24, 2007.
DOI : 10.1007/7171_2006_036

Y. Fukuda, Y. Okamura, H. Takeyama, and T. Matsunaga, Dynamic analysis of a genomic island in Magnetospirillum sp strain AMB-1 reveals how magnetosome synthesis developed, FEBS Lett, vol.580, pp.801-812, 2006.

A. A. Gomaa, H. E. Klumpe, M. L. Luo, K. Selle, R. Barrangou et al., Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems, MBio, vol.5, pp.928-941, 2014.

L. M. González, W. C. Ruder, A. P. Mitchell, W. C. Messner, and P. R. Leduc, Sudden motility reversal indicates sensing of magnetic field gradients in Magnetospirillum magneticum AMB-1 strain, ISME J, vol.9, pp.1399-1409, 2015.

M. Greenberg, K. Canter, I. Mahler, and A. Tornheim, Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields, Biophys. J, vol.88, pp.1496-1499, 2005.

M. Y. Hao, Y. H. Cui, and X. J. Qu, Analysis of CRISPR-Cas system in Streptococcus thermophilus and its application, Front. Microbiol, vol.9, p.257, 2018.

G. L. Hazelbauer, J. J. Falke, and J. S. Parkinson, Bacterial chemoreceptors: high-performance signaling in networked arrays, Trends Biochem. Sci, vol.33, pp.9-19, 2008.

W. Y. Hwang, Y. F. Fu, D. Reyon, M. L. Maeder, S. Q. Tsai et al., Efficient genome editing in zebrafish using a CRISPR-Cas system, Nat. Biotechnol, vol.31, pp.227-229, 2013.

W. Y. Jiang, D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini, , 2013.

, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol, vol.31, pp.233-239

Y. Jiang, B. Chen, C. L. Duan, B. B. Sun, J. J. Yang et al., Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Appl. Environ. Microbiol, vol.81, pp.2506-2514, 2015.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.

C. Jogler and D. Schüler, Genomics, genetics, and cell biology of magnetosome formation, Annu. Rev. Microbiol, vol.63, pp.501-521, 2009.

A. Komeili, Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria, FEMS Microbiol. Rev, vol.36, pp.232-255, 2012.

A. Komeili, Z. Li, D. K. Newman, and G. J. Jensen, Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK, Science, vol.311, pp.242-245, 2006.

A. Komeili, H. Vali, T. J. Beveridge, and D. K. Newman, Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.3839-3844, 2004.

A. C. Komor, A. H. Badran, and D. R. Liu, CRISPR-based technologies for the manipulation of eukaryotic genomes, Cell, vol.169, pp.559-559, 2017.

M. H. Larson, L. A. Gilbert, X. W. Wang, W. A. Lim, J. S. Weissman et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat. Protoc, vol.8, pp.2180-2196, 2013.

C. T. Lefèvre, T. Song, J. P. Yonnet, and L. Wu, Characterization of bacterial magnetotactic behaviors by using a magnetospectrophotometry assay, Appl. Environ. Microbiol, vol.75, pp.3835-3841, 2009.

D. Li, Curing genetic mutations for the next generation: CRISPR/Cas9-mediated gene correction in mouse spermatogonial stem cells, Sci. Bull, vol.60, pp.400-402, 2015.

J. H. Li, X. Ge, X. K. Zhang, G. J. Chen, and Y. X. Pan, Recover vigorous cells of Magnetospirillum magneticum AMB-1 by capillary magnetic separation, Chin. J. Oceanol. Limnol, vol.28, pp.826-831, 2010.

W. Lin, K. Benzerara, D. Faivre, and Y. X. Pan, Intracellular biomineralization in bacteria, Front. Microbiol, vol.5, p.293, 2014.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method, Methods, vol.25, pp.402-408, 2001.

T. Matsunaga, Y. Okamura, Y. Fukuda, A. T. Wahyudi, Y. Murase et al., Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1, DNA Res, vol.12, pp.157-166, 2005.

T. Matsunaga, T. Sakaguchi, and F. Tadokoro, Magnetite formation by a magnetic bacterium capable of growing aerobically, Appl. Microbiol. Biotechnol, vol.35, pp.651-655, 1991.

E. Meijering, O. Dzyubachyk, and I. Smal, Methods for cell and particle tracking, Imaging and Spectroscopic Analysis of Living Cells: Optical and Spectroscopic Techniques, pp.183-200, 2012.

D. Murat, M. Hérisse, L. Espinosa, A. Bossa, F. Alberto et al., Opposite and coordinated rotation of amphitrichous flagella governs oriented swimming and reversals in a Magnetotactic spirillum, J. Bacteriol, vol.197, pp.3275-3282, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452063

J. H. Oh and J. P. Van-pijkeren, CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri, Nucleic Acids Res, vol.42, p.131, 2014.

Y. X. Pan, W. Lin, J. H. Li, W. F. Wu, L. X. Tian et al., Reduced efficiency of magnetotaxis in magnetotactic coccoid bacteria in higher than geomagnetic fields, Biophys. J, vol.97, pp.986-991, 2009.

N. Philippe and L. Wu, An MCP-like protein interacts with the MamK cytoskeleton and is involved in magnetotaxis in Magnetospirillum magneticum AMB-1, J. Mol. Biol, vol.400, pp.309-322, 2010.

L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, vol.152, pp.1173-1183, 2013.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the CRISPR-Cas9 system, Nat. Protoc, vol.8, pp.2281-2308, 2013.

D. Schüler, U. Rainer, and E. Bäuerlein, A simple light-scattering method to assay magnetism in Magnetospirillum Gryphiswaldense, FEMS Microbiol. Lett, vol.132, pp.139-145, 1995.

C. Shen, L. Sung, S. Lin, M. Lin, and Y. Hu, Enhancing protein production yield from chinese hamster ovary cells by CRISPR interference, ACS Synth. Biol, vol.6, pp.1509-1519, 2017.

B. Steinberger, N. Petersen, H. Petermann, and D. G. Weiss, Movement of magnetic bacteria in time-varying magnetic-fields, J. Fluid Mech, vol.273, pp.189-211, 1994.

J. Wang, H. Wang, S. Liu, L. Liu, W. T. Tay et al., CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins, Insect Biochem. Mol. Biol, vol.87, pp.147-153, 2017.

K. Wang, X. Ge, T. Bo, Q. Chen, G. Chen et al., Interruption of the denitrification pathway influences cell growth and magnetosome formation in Magnetospirillum magneticum AMB-1, Lett. Appl. Microbiol, vol.53, pp.55-62, 2011.

Q. Wang, M. Wang, X. Wang, G. Guan, Y. Li et al., Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation, Appl. Environ. Microbiol, vol.81, pp.8044-8053, 2015.

X. Wang, S. Wei, C. Y. Chen, Y. X. Zhang, and T. Song, Design and fabrication of external magnetic field controlled system for magnetic micro-robots, Adv. Technol. Electr. Eng. Energy, vol.35, pp.20131-20145, 2016.

Y. Wang, Z. Zhang, S. Seo, K. Choi, T. Lu et al., Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system, J. Biotechnol, vol.200, pp.1-5, 2015.

S. Xie, B. Shen, C. Zhang, X. Huang, and Y. Zhang, sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential offtarget cleavage sites, PLoS ONE, vol.9, 2014.

J. Xu, X. Ren, J. Sun, X. Wang, H. Qiao et al., A toolkit of CRISPR-based genome editing systems in Drosophila, J. Genet. Genomics, vol.42, pp.141-149, 2015.

C. D. Yang, H. Takeyama, T. Tanaka, and T. Matsunaga, Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1, Enzyme Microb. Technol, vol.29, pp.13-19, 2001.

Q. Yin, W. Zhang, X. Qi, S. Zhang, T. Jiang et al., High hydrostatic pressure inducible trimethylamine N-oxide reductase improves the pressure tolerance of piezosensitive bacteria Vibrio fluvialis, Front. Microbiol, vol.8, p.2646, 2018.

R. I. Zeitoun, A. D. Garst, G. D. Degen, G. Pines, T. J. Mansell et al., Multiplexed tracking of combinatorial genomic mutations in engineered cell populations, Nat. Biotechnol, vol.33, pp.631-671, 2015.

H. Zeng, S. S. Wen, W. Xu, Z. R. He, G. F. Zhai et al., Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system, Appl. Microbiol. Biot, vol.99, pp.10575-10585, 2015.

H. Zhang, N. Menguy, F. Wang, K. Benzerara, E. Leroy et al., Magnetotactic coccus strain SHHC-1 affiliated to alphaproteobacteria forms octahedral magnetite magnetosomes, Front. Microbiol, vol.8, p.969, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01541659

S. Zhang, N. Petersen, W. Zhang, S. Cargou, J. Ruan et al., Swimming behaviour and magnetotaxis function of the marine bacterium strain MO-1, Environ. Microbiol. Rep, vol.6, pp.14-20, 2014.

W. Zhang, S. Zhang, and L. Wu, Measurement of free-swimming motility and magnetotactic behavior of magnetococcus massalia strain MO-1, Methods Mol. Biol, vol.1593, pp.305-320, 2017.

L. Z. Zhao, D. Wu, L. Wu, and T. Song, A simple and accurate method for quantification of magnetosomes in magnetotactic bacteria by common spectrophotometer, J. Biochem. Biophys. Methods, vol.70, pp.377-383, 2007.

X. J. Zhu, X. Ge, N. Li, L. Wu, C. X. Luo et al., Angle sensing in magnetotaxis of Magnetospirillum magneticum AMB-1, Integr. Biol, vol.6, pp.706-713, 2014.